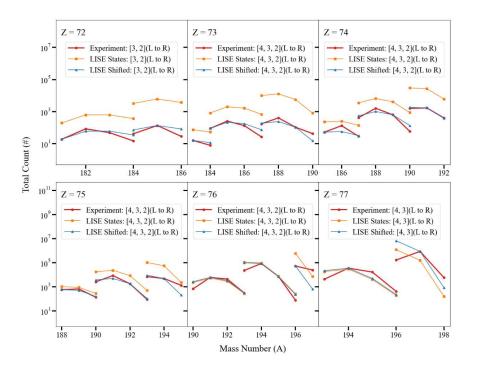


LISE Rate Reader + Comparison to Experiment

Kenny Haak



This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB) Operations, which is a DOE Office of Science User Facility under Award Number DE-SC0023633, and by the US National Science Foundation under Grants No. PHY-20-12040 and 23-10078 "Windows on the Universe: Open Quantum Systems in Atomic Nuclei at FRIB".

Foreword

- The goal of this code is to read results files from LISE (transmission values) and then plot them against experimentally measured rates
- In order to have the LISE values and Experimental values show up on the same scale, you need to set your beam rate in the LISE file roughly equal to the total number of beam counts during that given experimental run
- The end goal is a comparison plot like this
- Here there is even a built-in shifting function being used to correct the underlying errors in the charge state model
- To see more figures like this, reference my thesis

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Software Versions

Double check your versions

import matplotlib as mpl import pandas as pd import numpy as np import scipy import sys import jupyter_core print(mpl.__version__) print(pd. version) print(np. version) print(scipy.__version__) print(sys.version) print(jupyter_core.__version__) 3.5.3 1.3.5 1.21.6 1.7.3 3.9.10 (tags/v3.9.10:f2f3f53, Jan 17 2022,

4.9.2

FRIB

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Preparing the LISE File

- Make your desired settings in the LISE file
- Calculate transmission of all products
- Then follow this:

This will make your LISE rate file with extension res4

🖶 L I S E ++ [C:\Users\Kenny\OneDrive\Documents\Professional\Physics_Research\Codes\LISE_Reader\LISE_Rates\D4a\main.lpp]								<u> </u>	
File Options Experimental Settings Physics Models Calculations Utilities 1D-Plot 2D-Plot Databases Help									
Ctrl+O Ctrl+O	P C	HA HA	W WY	E Mg	1 65				
Append blocks from file						NAME AND	Children and		
Save Ctrl+S	5	¹⁹⁰ Re	¹⁹¹ Re	¹⁹² Re	¹⁹³ Re	¹⁹⁴ Re	¹⁹⁵ Re	196	
Save As		1.79e+4	2.36e+4	2.92e+4	1.06e+5	5.56e+4	2.39e+3	8.37	
View		0.057%	0.166%	0.324%	4.287%	7.091%	1.172%	0.30	
de Comments		¹⁸⁹ W	¹⁹⁰ W	¹⁹¹ W	¹⁹² W	¹⁹³ W	¹⁹⁴ W	195	
Configuration	> 1	7.75e+3	3.06e+4	2.7e+4	6.13e+3	2.86e+2	2.49e+1	1.6	
Options		0.108%	2.151%	5.524%	4.249%	0.64%	0.102%	0.0	
Results		Transmiss	sion + Energy	y, TOF, Energy	y Loss	<mark>≜ a</mark>	¹⁹³ Ta	194	
Block List File	•							6.15	
1 C:\Users\Kenny\OneDrive\Documents\Professional\Physics_Research\Codes\LISE_Reader\LISE_Rates\D4a\main.lpp		Energy, TOF, Energy Loss					0.026%	0.01	
2 C:\Users\Kenny\OneDrive\Documents\Professional\Physics_Research\e15130\CS\Charge_States\Monte_Carlo\D3a_for_MC - Copy - Copy.lpp		Rates				► Ē	¹⁹² Hf	,193	
3 C:\Users\Kenny\Documents\Professional\Research\198Pt_15130\D5.lpp		Transmission A, Z, q-first (summarized by reaction)						8.60	
4 C:\Users\Kenny\Documents\Professional\Research\198Pt_15130\Cloud_Mess\LISE\d50\a1900s800_Be47_192Hf_q72.5 sci150_br7-3.41.lpp				Transmission A, Z, q-last (summarized by reactions) Make					
5 C:\Users\Kenny\OneDrive\Documents\Research\198Pt_15130\D5.lpp						1.20 L(View		

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Preparing Experimental Yields

- Count the total observed events for each identified nuclide blob
 - You can use the 1D_fitter script I made if you reduced your experimental data down to 1D spectra
 - Technically you could rewrite the MonteCarlo reader script I made to count 2D spectra as well, but that would require additional work

Organize it into an excel file with the following format:

~	U	C	U	-		U	
	Z	Α	q	Z-q	A-3q	Yield	
7218169	72	181	69	3	-26	19	
7218269	72	182	69	3	- <mark>2</mark> 5	85	
7218369	72	183	69	3	-24	49	
7218469	72	184	69	3	-23	15	
7318369	73	183	69	4	-24	16	
7318469	73	184	69	4	-23	8	
7218470	72	184	70	2	-26	42	

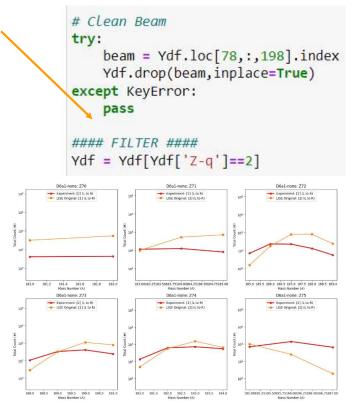
U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Initializing

- Set your paths and define key variables and flags
- You can see how I organized my data in the home directory
- Feel free to organize and access your data however you wish
- Variables & Flags:
 - dset → For my data organization
 - param → This allows you to compare the upper and lower bound of a given parameter adjustment such as changing target thickness
 - SHIFT \rightarrow Normalize the LISE data to the experimental data
 - SAVE → Save the plots to a png file in your working directory

```
dset = 'D6a1'
param = 'none'
SHIFT = 0
SAVE = 0
```

```
# Define paths
YIELDfile = f'Experimental_Rates\\{dset}\\{dset}_yields.xlsx'
TRANSfile = f'LISE_Rates\\{dset}\\main.res4'
print(TRANSfile)
```

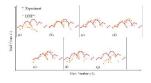


U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Filtering and Matching Data

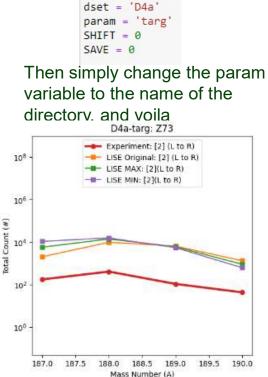
- You can Filters to your experimental data if that is necessary
 - Here we take out the primary beam and only show He-like charge state Z-q = 2.
- You want to compare all present experimental data to LISE
- So we also look for an overlap between the two data sets and remove anything that doesn't have a value in both experimental and LISE data

#Only show Lise values that have a corresponding experimental data counterpart
Ldf = Ldf[Ldf['ID'].isin(list(Ydf['ID']))]

Here are the results

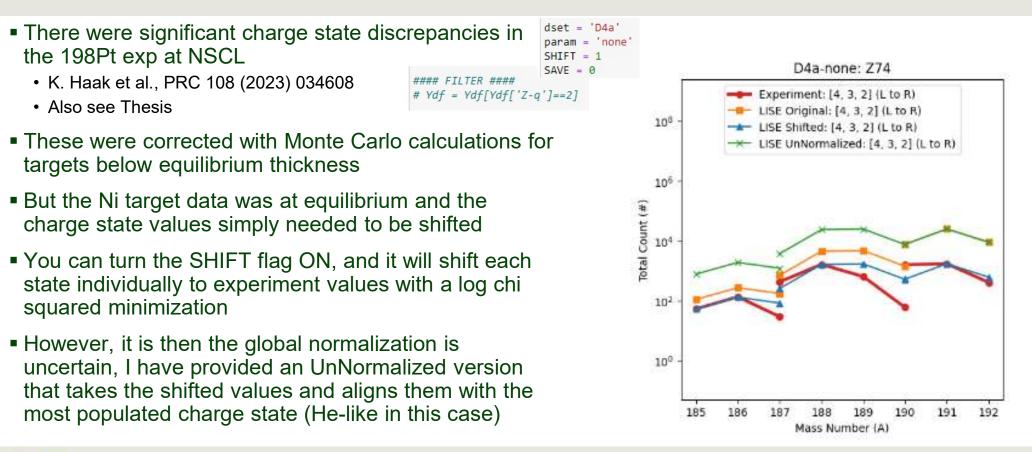

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Visualizing Parameter Variation


- You can set a parameter to vary and plot the upper and lower bound of those variations
- To do this you need to follow the same file structure I have in my LISE_Rates directory
- Each adjusted parameter has its own directory
- Within parameter directory, the naming convention goes as follows

targ_mn
 targ_mn.res4
 targ_mx
 targ_mx.res4

An alternative to this is to just run the main code with param = none and just adjust the LISE file every time. To see a result of this see Figure 3.8 of my thesis



U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Correcting Charge State Normalizations

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Afterword

 There is a final cell in this code that was meant to scan for parameters that should be considered in the error evaluation when estimating transmission error bars with LISE

```
### For use in systematically locating impactful parameters on
### Join this data with experimentally identified ions and look
dset = 'D4b'
YIELDfile = f'Experimental_Rates\\{dset}\\{dset}_yields.xlsx'
TRANSfile = f'LISE_Rates\\{dset}\\main.res4'
RES1file = f'LISE_Rates\\{dset}\\main.res1'
```

- This method works by looks for incredibly tiny transmissions and providing the point in the separator where these tiny transmissions occur
- This is most likely done better with varying each and every parameter and observing the change in transmission of most products as a whole
- This is really a food for though

U.S. Department of Energy Office of Science National Science Foundation Michigan State University Here this shows how small the transmissions are at the FS slits position

Tdf Before Filter: (530, 45) After Filter: (123, 45)										
[ID	AEl	A	Ζ	Qf	Q1	Fs_sl trans			
82	7619774	1970s	197	76	74	73	0.001			
114	7619172	1910s	191	76	72	73	0.000			
148	7519573	195Re	195	75	73	72	0.000			
337	7318670	186Ta	186	73	70	69	0.003]			