

ETACHA Reader

Kenny Haak

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB) Operations, which is a DOE Office of Science User Facility under Award Number DE-SC0023633, and by the US National Science Foundation under Grants No. PHY-20-12040 and 23-10078 "Windows on the Universe: Open Quantum Systems in Atomic Nuclei at FRIB".

Outline

Initialize – 3 Shell Files – 4 Equilibrium Thickness – 5

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Initialize

Ensure you have these versions of packages and python

```
import os
import re
import sys # For showing version only
import numpy as np
import pandas as pd
import matplotlib as mpl # For showing version only
import matplotlib.pyplot as plt
print(mpl.__version__)
print(pd.__version__)
print(np.__version_)
print(sys.version)
3.5.3
1.3.5
1.21.6
3.9.10 (tags/v3.9.10:f2f3f53, Jan 17 2022, 15:14:21)
```

Set the global PATH variable to where your LISEcute results folder is located

The path is your LISE++ results folder
PATH = 'C:\\Users\\Kenny\\Documents\\LISEcute\\results'

But in order for you to inspect my files I have copied this file into the home directory of this notebook

```
# The path is your LISE++ results folder
# PATH = 'C:\\Users\\Kenny\\Documents\\LISEcute\\results'
PATH = 'results'
```


U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Shell Files

- ETACHA output files are divided into sets of 10 electron shells
- We usually are concerned with ions near fully stripped
- Therefore, this code has shell '0009' as an example, which contains orbitals 1s through 2p
- This will report results for all 0009 ETACHA files in your LISEcute/results directory

PROJECTILE	: atomic n	umber= 78	incident	charge=	61 atomic	mass= 198					
TARGET	: atomic n	umber= 4	aton	ic mass=	9 der	nsity= 1.8	50 g/cm3				
	incident e	nergy= 85	.000 MeV/u	velocity	= 54.857	(au)					
	relative	error=le-0	5 absolute	error=le-	-12						
Energy 1	oss: S1=	36.228 MeV	/mg/cm2 at	E1= 85.0	000 MeV/u						
	and: S2=	37.349 MeV	/mg/cm2 at	E2= 80.7	728 MeV/u						
Deference	(Inudrogen	(a)) areas	acationa	In 10E 20							
CAPTURE	(MEC+REC)	TO: 10 -	9 294a_02	20 = 1 4	116a-02 2n	= 1 219a-0	12				
CALIONE	(Incontec)	38 -	4.289e-03	3n = 3.5	195e-03 3d	= 2.799e-0	13 (n=4)	= 0.000e+	0.0		
IONIZATI	ON OF:	15 =	4.252e-03	25 = 1.1	17e-01 2p	= 1.502e-(01				
		38 =	1.467e+00	3p = 1.6	52e+00 3d	= 2.064e+0	00 (n=4)	= 0.000e+	00		
LS EXCITAT	ION TO:	25 =	1.845e-03	2p = 6.8	332e-03						
		38 =	3.556e-04	3p = 1.1	179e-03 3d	= 1.241e-(04 (n=4)	= 0.000e+	00		
2s EXCITATION TO:		38 =	4.076e-02	3p = 9.6	3p = 9.650e-02 3d		01 (n=4)	= 0.000e+	.000e+00		
2p EXCITAT	ION TO:	38 =	4.235e-03	3p = 4.5	3p = 4.532e-02 3d		01 (n=4)	= 0.000e+00			
EXCITATION	To n=4 fr	om: 3s =	0.000e+00	3p = 0.0	000e+00 3d	= 0.000e+0	00				
INTRASHELL	EXCITATIO	N: 2s t	2p = 1.4	31e+00	3s to 3p	= 5.442e+(00				
	********	*********		********					********	****	
(ug/gm2)	(7801)	(7701)	(7601)	(7501)	(7401)	(7201)	(7301)	(7101)	(7001)	(6001)	Mol
********	********	*********	(/02+)	********	(/101)	(/30+)	(/201)	(/10+)	(/00+)	(0500)	Hev.
5.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	85.
10.00	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	85.
20500.00	0.00139	0.35224	30.26755	38.68849	21.90145	7.12504	1.45566	0.19148	0.01591	0.00077	81.2
20750.00	0.00149	0.36963	31.09786	38.77758	21.41442	6.79601	1.35444	0.17381	0.01408	0.00067	81.2
21000.00	0.00159	0.38720	31.91844	38.84331	20.93401	6.48346	1.26100	0.15792	0.01249	0.00058	81.1
21250.00	0.00170	0.40540	32.74233	38.88734	20.45298	6.18189	1.17339	0.14340	0.01107	0.00050	81.1
21500.00	0.00181	0.42410	33.56236	38.90998	19.97592	5.89341	1.09190	0.13026	0.00981	0.00043	81.1
21750.00	0.00193	0.44330	34.37831	38.91205	19.50334	5.61754	1.01611	0.11834	0.00870	0.00037	81.1
22000.00	0.00205	0.46266	35.18247	38.89476	19.04002	5.35614	0.94621	0.10763	0.00773	0.00032	80.9
22250.00	0.00218	0.48263	35.98727	38.85852	18.57900	5.10463	0.88076	0.09785	0.00686	0.00028	80.9
22500.00	0.00232	0.50309	36.78629	38.80428	18.12421	4.86455	0.81993	0.08899	0.00610	0.00024	80.9
22750.00	0.00246	0.52403	37.57935	38.73284	17.67595	4.63540	0.76339	0.08095	0.00542	0.00021	80.9
23000.00	0.00261	0.54510	38.36005	38.64590	17.23799	4.41842	0.71121	0.07371	0.00482	0.00018	80.7
					4-						
lar.thick.	(78e)	1e-	2e-	3e-	9e-	se-	6e-	/e-	de-	ye-	E_01
A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERT	1 (7 ((//e+)	(/oe+)	(/ae+)	(/te+)	(/Je+)	(/2e+)	(/1e+)	(/Ue+)	(09e+)	meV/

Elapsed time is 00:00:17 (or 17.912 sec Final energy : 80.727 (MeV/u)

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Equilibrium Thickness

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

White Chi Method

- To use the white chi method you actually have to copy and paste the text from the diagnostic output in ETACHA and store it in a file called 'ET_output.txt' in the same directory as the Jupyter Notebook to extract the information
- The smallest white chi usually corresponds to the thickness with the least change in charge state with increasing thickness (equilibrium)
- If confused, consult Oleg
- All data used here is
 - 85 MeV/u ¹⁹⁸Pt⁶¹⁺
 - Ni 25 mg/cm^2

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Blue Chi Method

- The blue chi is the width of the charge state expectation value <q>
- This result is provided in the EtaLog.txt output file of ETACHA for LISE
- This code block will extract that value and make a plot so you can inspect for the minima
- It also prints the minima

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Charge State Evolution Curve Slope

- Here we simply inspect the charge state fractions and their evolution curves
- You need to set the specific charge state you are inspecting, I recommend He-like or something close to fully stripped
- When the slope approaches zero, this means the electron loss and capture cross sections for that orbital has balanced each other out
- This code is designed to handle fine grain resolution charge state evolution curves, and will take the center of the "highest flat zone"

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Afterword – Highest Flat Zone

- Why the "Highest Flat Zone" for the charge state evolution curve?
- In nuclear experiments, a heavy ion beam with high Z will enter the target most likely not at its "most-stripped" or at equilibrium
- Therefore these lower lying orbitals like the 1s get populated quickly (sharp rise)
- After this process slows down and equilibrium is approached, the beam is always continuously losing energy
- The stripping power of the material is dependent on beam energy, so the lower lying orbital begins to slowly deplete (slow fall)
- That's why we want the highest flattest point, it is the point where you have reach optimal stripping from the material and are beginning to fall backwards to a lower energy equilibrium

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Afterword – Comparing Methods

- You can see all methods don't necessarily agree. The first real minima of blue chi is much further than the white chi and evolution curve methods
- The white chi and evolution curve methods actually agree in this case, we could conclude that this concurrence gives us confidence in the value of 8.25 mg/cm² eq. thickness for Ni target
- It makes you wonder... That 17 mg/cm² target for the 198Pt exp at NSCL was PRETTY EQUILIBRATED huh?
- THAT is why we didn't use the MC NeR method... You can check my thesis if you are curious about what all this nonsense is about

U.S. Department of Energy Office of Science National Science Foundation Michigan State University