
This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan

State University. Michigan State University operates FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 USA

2025

Arjun Ray

BOTTLENECK POINTS AND POSSIBLE OPTIMIZATIONS METHODS

DK@ MSU, Slide 2

SOME BOTTLENECK POINTS:
Function chypser in

e_Tceis

Function digam in

e_Tceis

BOTTLENECK POINTS AFTER PRESSING THE “CONTINUE”

BUTTON

In e_F4
In e_ETACHA

POSSIBLE SOLUTIONS:
-First step will be to optimize numerical

calculations by reducing redundant

calculations(reducing iterations and more

efficient methods of calculation, using temporary

variables)

-Parallelize the computation of loops in heavy

functions.

-Approximations for Large Iterations

Bottleneck Solutions #1

METHODS THAT WE WILL USE TO OPTIMIZE-
-Precompute (caa * cbb / ccc) to avoid redundant calculations.

-Use abs(cf - ctemp) < EPSILON instead of direct equality for convergence.

-Parallelize with #pragma omp parallel for faster execution.

Result #1

-Made three key improvements to make the function

run faster and more reliably:

● Instead of doing the same calculation over and

over, it now computes it once and reuses it.

● Instead of looking for an exact match, it checks

if the difference is small enough to safely stop.

● Organized the loop better so the function

doesn’t waste effort.

-Results of optimisation

● Overall function runtime cut by almost

60%

● No longer the heaviest function in

e_Tceis

#2

METHODS THAT WE WILL USE TO OPTIMIZE-

-Use of constexpr for Constants

-Avoided unnecessary pre computations in loop

-Use fewer temporary variables in return statement

Result #2

-Made three key improvements to make the

function run faster and more reliably:

● Use of constexpr for Constants

● Avoided unnecessary pre computations

in loop

● Use fewer temporary variables in return

statement

-Results of optimisation

Overall function runtime cut by

more than 50%

#3

METHODS THAT WE WILL USE TO OPTIMIZE-

-Asymptotic Expansion for Large nz

-Declare xz, yz, and nz as const

-Simplified Conditional Structure

#4

METHODS THAT WE WILL USE TO OPTIMIZE-

-Reduced Loop Overhead: Instead of looping separately for each sum

range, a single loop iterates through V, categorizing values in one pass.

-The categorization is handled via if-else blocks

-Using constexpr for range values

Results #4

Made three key improvements to make the

function run faster and more reliably:

● Instead of looping separately for each sum

range, a single loop iterates through V,

categorizing values in one pass.

● The categorization is handled via if-else blocks

-Results of optimisation

Overall function runtime cut by more

than 65%

#5 and #6 and Results

-Results of optimisation

● Removed the unnecessary

numPP and numP variable,

returned directly

● (f_numPP)-The function

runtime has decreased by

approximately 29%

● (f_numP)-Function runtime

has negligible runtime

compared to program

runtime(Almost 95%

decrease).

#7 and #8 and Results

-Results of optimisation

● Removed the unnecessary f_IKM

and f_IN variable, returned directly

● % operator to calculate the

remainder instead of subtracting

multiples.

● (f_IKM)-The function runtime has

decreased by approximately 75%

● (f_IN)-The function runtime has

decreased by approximately 75%

Final Results

Runs
- Each version (optimized & original) was run 3 times with

identical parameters(Initial energy, projectile, target etc.) to

ensure fairness.

- I averaged the run times and found the time profit between the

two versions.

Results
- Parameters 3 and 4 were run on Ionization and Excitation models being set on PWBA(fast). We see only around a 2.2% time profit.

- Parameters 1 and 2 were not run on Ionization and Excitation models set on PWBA(fast). Versions v.3 and v.4 were used and both were

tested with both integration models. We saw a huge time profit in this case(around 23%). The profit was mainly due to faster cross-

section calculation.

- The time profit percentages were around the same, suggesting that the optimized code works for all cases.

	Slide 1: Arjun Ray
	Slide 2: BOTTLENECK POINTS AND POSSIBLE OPTIMIZATIONS METHODS
	Slide 3: Bottleneck Solutions #1
	Slide 4: Result #1
	Slide 5: #2
	Slide 6: Result #2
	Slide 7: #3
	Slide 8: #4
	Slide 9: Results #4
	Slide 10: #5 and #6 and Results
	Slide 11: #7 and #8 and Results
	Slide 12: Final Results

