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BOTTLENECK POINTS AND POSSIBLE OPTIMIZATIONS METHODS
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SOME BOTTLENECK POINTS:
Function  chypser in 

e_Tceis

Function digam in 

e_Tceis

BOTTLENECK POINTS AFTER PRESSING THE “CONTINUE” 

BUTTON

In e_F4
In e_ETACHA

POSSIBLE SOLUTIONS:
-First step will be to optimize numerical 

calculations by reducing redundant 

calculations(reducing iterations and more 

efficient methods of calculation, using temporary 

variables)

-Parallelize the computation of loops in heavy 

functions.

-Approximations for Large Iterations



Bottleneck Solutions #1

METHODS THAT WE WILL USE TO OPTIMIZE-
-Precompute (caa * cbb / ccc) to avoid redundant calculations.

-Use abs(cf - ctemp) < EPSILON instead of direct equality for convergence.

-Parallelize with #pragma omp parallel for faster execution.



Result #1

-Made three key improvements to make the function 

run faster and more reliably:

● Instead of doing the same calculation over and 

over, it now computes it once and reuses it.

● Instead of looking for an exact match, it checks 

if the difference is small enough to safely stop.

● Organized the loop better so the function 

doesn’t waste effort.

-Results of optimisation

● Overall function runtime cut by almost 

60%

● No longer the heaviest function in 

e_Tceis



#2

METHODS THAT WE WILL USE TO OPTIMIZE-

-Use of constexpr for Constants

-Avoided unnecessary pre computations in loop

-Use fewer temporary variables in return statement



Result #2

-Made three key improvements to make the 

function run faster and more reliably:

● Use of constexpr for Constants

● Avoided unnecessary pre computations 

in loop

● Use fewer temporary variables in return 

statement

-Results of optimisation

Overall function runtime cut by 

more than 50%



#3

METHODS THAT WE WILL USE TO OPTIMIZE-

-Asymptotic Expansion for Large nz

-Declare xz, yz, and nz as const

-Simplified Conditional Structure



#4

METHODS THAT WE WILL USE TO OPTIMIZE-

-Reduced Loop Overhead: Instead of looping separately for each sum 

range, a single loop iterates through V, categorizing values in one pass.

-The categorization is handled via if-else blocks

-Using constexpr for range values



Results #4

Made three key improvements to make the 

function run faster and more reliably:

● Instead of looping separately for each sum 

range, a single loop iterates through V, 

categorizing values in one pass.

● The categorization is handled via if-else blocks

-Results of optimisation

Overall function runtime cut by more 

than 65%



#5 and #6 and Results

-Results of optimisation

● Removed the unnecessary 

numPP and numP variable, 

returned directly

● (f_numPP)-The function 

runtime has decreased by 

approximately 29%

● (f_numP)-Function runtime 

has negligible runtime 

compared to program 

runtime(Almost 95% 

decrease).



#7 and #8 and Results

-Results of optimisation

● Removed the unnecessary f_IKM 

and f_IN variable, returned directly

● % operator to calculate the 

remainder instead of subtracting 

multiples.

● (f_IKM)-The function runtime has 

decreased by approximately 75%

● (f_IN)-The function runtime has 

decreased by approximately 75%



Final Results

Runs 
- Each version (optimized & original) was run 3 times with 

identical parameters(Initial energy, projectile, target etc.) to 

ensure fairness.

- I averaged the run times and found the time profit between the 

two versions.

Results
- Parameters 3 and 4 were run on Ionization and Excitation models being set on PWBA(fast). We see only around a 2.2% time profit. 

- Parameters 1 and 2 were not run on Ionization and Excitation models set on PWBA(fast). Versions v.3 and v.4 were used and both were 

tested with both integration models. We saw a huge time profit in this case(around 23%). The profit was mainly due to faster       cross-

section calculation.

- The time profit percentages were around the same, suggesting that the optimized code works for all cases.
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