

LISE⁺⁺ Version 9.10.256 from 01/06/2016

Use the latest version!

- Important updates and modifications recently done
- Reaction mechanism settings
- Beam & Target settings
- Separator settings (geometry, angular acceptance, charge states)
- Optics Optimization
- Matrix & Beam sigma envelopes
- Monte Carlo transmission simulation
- Residue transmission analysis
- Primary beam scattering
- Primary beam charge state transmission

LISE⁺⁺ code :

- Correction in angular straggling subroutines for low energy use
- Implementation of the Multi-layers method in MC mode for qualitative estimation of angular straggling and Coulomb scattering
- Modification and correction in the Optics optimizer utility
- Utility "Angular Straggling & Rutherford scattering probabilities"
- Possibility to simulate primary beam scattering

SHELS configuration file :

- Using stripping foil after a target
- Modification of initial emittance (shapes and values)
- Using fixed effective lengths
- Modification of configuration geometry based on the Word file from Autumn 2015 (length, slits and so on)
- Setting reaction mechanism parameters to obtain 300nb 2n-residue cross section

⁴⁸Ca(221 MeV) + Bi

1e+5

1e+4 1e+3 1e+2 1e+1 1e+1

1e-1

1e-2 1e-3

1e-4

1e-5

1e-6

1e-7

1e-8

1e-9

1e-10

1e-1

)16 14:13:51

4.2

++ [G:\ Dubna\SHELSeff 48Ca Bi v5.lpp]

Cross Section (mb)

Reaction mechanism : excitation function

Fusion-Residue calculator

V Quit

All fusion characteristics are calculated with BASS-model MICHIGAN STATE

L I S E ++

Beam, Target, and Stripper Settings

Beam

Beam	B 1113.8.8	le tra	1 I dda	? ×
A Element q+	Beam energy Energy • 4.609778 TKE • 221	MeV/u MeV	Emittance [#1] Beam CARD 1D - shape 2D 2D - shape Correlated (sigma, semi-axis, (Distribution mode (Monte Carlo with half-width) method) method) t	mm C cm eam respect to spectrometer
z	Brho C 0.741896	Tm	1.X mm 5 Ellipse uniform (proj.) 💌 🗷 Ellipse uniform 🔍 Y 🔍	dX 0 mm
Stable	P C 4.4483	GeV/c	2. T mrad 1 Gaussian 💌 🗖	d T 0 mrad
Table of	U C 11050	KV	3. Y mm 🗾 5 Ellipse uniform (proj.) 🔽 🗹 Ellipse uniform 🖵 🛛 💌	dY 0 mm
Nuclides	- Beam intensity		4. P mrad 1 Gaussian 💌 🗖	d P 0 mrad
	C 20000	ená	5. L mm 🛛 🛛 Gaussian 🔽 🗖	d T 0 degrees
	C 1000		6. D % 0.1 Gaussian 🔽 🗆	d P 0 degrees
Ok Ok		prie		
	0 6.25e+12	pps	Energy Loss in the RF frequency 20 MHz	C: V (192) ((
X Cancel	0 0.22127	KW	target box [KW] 0.004403 Bunch length 1 ns 0p	am Sigma vector [#2] used for [htics Optimization ("Opt.Beam")

Statistics

255Lr equil.charge distr-n after Stripper (C): Fragment energy = 0.1 MeV/u 48Ca (4.61 MeV/u) + BiO2 (0.4 mg/cm2) Calculations for 255Lr 19+ 19+ 19+ 19+ 19+ 19+ ; Material C Charge Distribution Method is 5 Plot¹

N		distribution		x-mean	x-max	y-	-max	deviation		FWHM		area	SumOfCounts	LeftPsigma	RightPsigma
0:	1 2	0-Winger 1-Leon	+	4.6582e+01 1.5138e+01	+4.7000e+01	1.9	62e+01	2.015e+00	4	.777e+00 315e+00		1.0000e+02 1.0000e+02	1.000e+02	2.309e+00	1.749e+00 1.478e+00
0:	3	2-Shima	+	1.9748e+01	+2.0000e+01	1.8	43e+01	2.160e+00	5	.115e+00		1.0000e+02	1.000e+02	2.350e+00	1.994e+00
0.	4 5	3-GLOBAL+W 4-GLOBAL+L	++++	4.65820+01 1.51380+01	+4.7000e+01 +1.5000e+01	2.8	62e+01 58e+01	2.015e+00	4	.777e+00 .315e+00		1.0000e+02 1.0000e+02	1.000e+02 1.000e+02	2.309e+00 1.338e+00	1.749e+00 1.478e+00
D	6	5-Schiwietz	+	1.8769e+01	+1.9000e+01	1.7	38e+01	2.293e+00	j 5	.418e+00	İ	1.0000e+02	1.000e+02	2.465e+00	2.136e+00

255Lr equil.charge distr-n after Stripper (C)

Fraction (%)

6

Separator settings (geometry, angular acceptance)

1e+3

2

1e+2 5

2

1e+1

- Effective quad lengths have been fixed .
- The geometry after D8 has been corrected

The Angular acceptance (used in the Distribution mode) vertical component has been modified based on MC transmission results after the optics optimization (will be discussed later).

New parameters give significantly better agreement between MC and analytical results

MICHIGAN STATE

S NSCL

Optics optimization : main priority is high transmission

Beam vector used for Optical Optimization											
	- ''Opt.Bea	m''									
	1. X	5	mm	• mm							
	2. T	50	mrad	C cm							
	3. Y	5	mm								
	4. P	50	mrad								
	5. L	0	mm	V OK							
	6. D	6	%	🗶 Cancel							
<u> </u>			-								

The beam emittance used for optimization was significantly increased

RESULTS

C\program files (x86)\lise\results\SHELSeff_48Ca_Bi v6.fit_init	A DESCRIPTION OF A DESC
chi2: Initial 3.78756 LISE fit reduced values chi1: Initial 9.94536 LISE fit reduced values	
Parameters: LeftBound Initial RightBound #01-q: Quad 1 -1.0e+99 <	
Constraint values: Initial Y-value Precision #01: Q2a sR +8.048e+01 +8.048e+01 1.0e+00 #02: Q3a sR +8.356e+01 +8.356e+01 1.0e+00 #03: sv sX +6.099e+01 +2.000e+02 1.0e+00 #04: sv Yfoc +1.390e-01 +1.390e-01 1.0e+00 #05: sv TT -1.699e-02 -1.699e-02 1.0e-01 #05: c2 sX +6.552e+01 +8.500e+01 1.0e+00 #07: Q5a sR +8.484e+01 +8.500e+01 1.0e+00 #07: Q5a sR +8.406e+01 +8.500e+01 1.0e+00 #07: Star +8.406e+01 +8.500e+01 1.0e+00 #08: Q6a sR +8.406e+01 +8.500e+01 5.0e-01 #09: Fin xfocus +3.089e-01 5.0e-01 #3.089e-01 5.0e-01 #11: Fin xfocus +3.16e-01 +3.506e+01 1.0e-01 #3.500e+01 1.0e-01 #12: Fin sX +3.027e+01 </td <td>(Init-Des) Desired +4.823e-01 < 80 +3.558e+00 < 80 0 < 200 +1.390e+00 = 0 0 < 85 +8.519e-04 < 85 +3.912e-04 < 85 +1.386e+00 = 0 +6.178e-01 = 0 +2.116e-01 = 0 +5.983e-01 < 35 +8.817e-05 < 35</td>	(Init-Des) Desired +4.823e-01 < 80 +3.558e+00 < 80 0 < 200 +1.390e+00 = 0 0 < 85 +8.519e-04 < 85 +3.912e-04 < 85 +1.386e+00 = 0 +6.178e-01 = 0 +2.116e-01 = 0 +5.983e-01 < 35 +8.817e-05 < 35
	nd sigma vector mm_mrad] ======= Beam(sigma) 5.931e-01 3.51e+01 1.931e+00 1.51e+01 0 3.03e+01 0 1.57e+01 1.636e+00 1.23e+01 1.000e+00 6.00e+00

constraints

Optics fit	
Blocks with parameters to vary	Active Constraint blocks
#01-q Position@007: Quad 1 #02-q Position@010: Quad 2 #03-q Position@013: Quad 3 #04-q Position@030: Quad 4 #05-q Position@033: Quad 5 #06-q Position@036: Quad 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Niter = 1000 FIT Previuos	So Optics Settings Fit Settings
values	Browse output file
🗶 Exit	Show initial conditions Matrix Plot
	Beam Sigma Edit [#2]
1 Uch	SHELSeff_48Ca_Bi v6.fit

Matrix elements after the optimization

Optics optimization : constraints

Monte Carlo Transmission

²⁵⁵Lr¹⁹⁺ transmission: 58.3%

Monte Carlo Transmission

²⁵⁵Lr¹⁹⁺ transmission: 58.3%

Monte Carlo Transmission Results for ²⁵⁵Lr¹⁹⁺

Monte Carlo Transmission Results for ²⁵⁵Lr^{ALL+}

Isotope Group : Monte Carlo Yield Plot

X vs ion charge @ Final point

Transmission : Analytical

MICHIGAN STATE UNIVERSITY LISE++

²⁵⁵Lr¹⁹⁺ transmission *Analytical* : 53.1%

²⁵⁵Lr^{All+} transmission *Analytical* : 44.7%

						_						7	
🗧 statistics: 255Lr		_		_	_								
255Lr Alpha	a and Beta+	decay (Z=	103, N=152) L	awrencium				9.()98 / 17. ⁻	15 * 100%	6	
All reactions total iso	All reactions total isotope rate 1.19e+0 pps and Overall isotope transmission 44.653 %												
and Overall isotope tra	ansmission	44.653	8						/_	/			
O1(tuning)		25	24	23	22	21	20	19	18	17	16	15	14
Q2 (C1)		25	24	23	22	21	20	19	18	17	16	15	14
Q3 (D22 1)		25	24	23	22	21	20	19	18	17	16	15	14
Q4 (D22 2)		25	24	23	22	21	20	19	18	17	16	15	14
Q5 (C2)		25	24	23	22	21	20	19	18	17	16	15	14
Q6(D8)		25	24	23	22	21	20	19	18 /	17	16	15	14
Reaction		FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes
Ion Production Rate	(pps)	6.1e-3	1.99e-2	4.92e-2	1.01e-1	1.67e-1	2.34e-1	21900-1	1.96e-1	1.1e-1	4.77e-2	1.44e-2	2.71e-3
Total ion transmission	(%)	0.229	0.745	1.847	3.776	6.264	8.783	9.098	7.339	4.14	1.789	0.541	0.102
Total: this reaction	(pps)	1.19e+0	1.19e+0	1.19e+0	1.19e+0	1.19e+0	1.19e+0	1.19e+0	1.19+0	1.19e+0	1.19e+0	1.19e+0	1.19e+0
X-Section in target	(mb)	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4	1.41e-4
Target	(%)	100	100	99.86	100	100	100	100	100	100	99.86	99.86	100
Unreacted in material	(%)	100	100	100	100	100	100	100	100	100	100	100	100
Unstopped in material	(%)	100	100	99.86	100	100	100	100	100	100	99.86	99.86	100
Stripper	(%)	0.874	2.31	5.05	9.12	13.58	16.77	17.15	14.47	10.09	5.82	2.76	1.09
Unreacted in material	(%)	100	100	100	100	100	100	100	100	100	100	100	100
Q (Charge) ratio	(%)	0.874	2.31	5.05	9.12	13.62	16.81	17.15	14.47	10.09	5.82	2.77	1.09
Unstopped in material	(%)	100	99.77	100	100	99.77	99.77	100	100	100	100	99.77	100
tuning	(%)	61.4	61.4	61.4	61.4	61.4	61.4	61.4	61.4	61.4	61.4	61.4	61.4
X angular transmission	(%)	88.45	88.45	88.45	88.45	88.45	88.45	88.45	88.45	88.45	88.45	88.45	88.45
Y angular transmission	(%)	69.42	69.42	69.42	69.42	69.42	69.42	69.42	69.42	69.42	69.42	69.42	69.42
DTS1	(원)	100	100	100	100	100	100	100	100	100	100	100	100
slits 1	(%)	99.75	99.75	99.75	99.75	99.75	99.75	99.75	99.75	99.75	99.75	99.75	99.75
X space transmission	(%)	99.75	99.75	99.75	99.75	99.75	99.75	99.75	99.75	99.75	99.75	99.75	99.75
Y space transmission	(*)	100	100	100	100	100	100	100	100	100	100	100	100
DSIQI	(*)	100	100	100	100	100	100	100	100	100	100	100	100
Quad I	(*)	100	100	100	100	100	100	100	100	100	100	100	100
	(*)	100	100	100	100	100	100	100	100	100	100	100	100
Quad 2	(t) (t)	100	100	100	100	100	100	100	100	100	100	100	100
u_q25 Omod 2	(*)	100	100	100	100	100	100	100	100	100	100	100	100
d a3a1	(*)	100	100	100	100	100	100	100	100	100	100	100	100
C1	(*)	100	100	100	100	100	100	100	100	100	100	100	100
d c1d1	(*)	100	100	100	100	100	100	100	100	100	100	100	100
D22 1	(*)	100	100	100	100	100	100	100	100	100	100	100	100
d disv	(%)	100	100	100	100	100	100	100	100	100	100	100	100
slits SV	(%)	97.08	97.04	96.96	96.8	96.54	96.49	96.68	96.41	96.07	95.48	94.84	93.57
X space transmission	(%)	97.08	97.04	96.96	96.8	96.54	96.49	96.68	96.41	96.07	95.48	94.84	93.57
	x = /												10

Brho scanning

++ [G:_Dubna\SHELSeff_48Ca_Bi v6.lpp]

Angle [Lab-deg]

Primary beam scattering

 \mathbf{V}

Primary beam charge states transmission settings

🖶 G:_D	🗧 G:_Dubna\2016_01_04_Dubna\48ca_beam.listiso											
; Z	N	Reaction	Q1	Q2								
20	28	RO	20+	20+	20+	20+	20+	20+				
20	28	RO	19+	19+	19+	19+	19+	19+				
20	28	R0	18+	18+	18+	18+	18+	18+				
20	28	RO	17+	17+	17+	17+	17+	17+				
20	28	RO	16+	16+	16+	16+	16+	16+				
20	28	R0	15+	15+	15+	15+	15+	15+				
20	28	RO	14+	14+	14+	14+	14+	14+				
20	28	RO	13+	13+	13+	13+	13+	13+				
20	28	R0	12+	12+	12+	12+	12+	12+				
20	28	RO	11+	11+	11+	11+	11+	11+				
20	28	RO	10 +	10+	10+	10+	10+	10+				
20	28	RO	9+	9+	9+	9+	9+	9+				
20	28	RO	8+	8+	8+	8+	8+	8+				

2nd order optics has to be used

for primary beam charge states transmission !!!!!!

It will be done soon (Electrical dipole).

2nd order optics has to be used

for primary beam charge states transmission !!!!!!

It will be done soon (Electrical dipole).

