

LISE⁺⁺ Version 9.10.209 from 11/19/2015

Version 3 From 11/23/15 (the update starts from page 24)

Attached files:

11/19/15

SHELSeff.Ipp : previous SHELS.Ipp file modified for effective lengths and new drifts according to SHELS_parameters.doc and new last drifts information. The Tof start detector has been included. Constraints were not optimized

SHELSeff_sym.lpp : SHELSeff.lpp with a Faraday cup 38.1cm after Q6, to make symmetrical system.

SHELSeff_sym_part0.lpp : SHELSeff_sym.lpp with a Faraday cup after the tuning dipole to get ²⁵⁴No fragment distribution parameters after the target in order to use them in the optics optimization

SHELSeff_sym_part1.lpp : SHELSeff_sym.lpp with a Faraday cup after the CV slits to optimize Quad fields on new constraints

11/20/15

SHELSeff_sym_part2.lpp : SHELSeff_sym_part1.lpp without a Faraday cup after the CV slits to optimize Quad fields on with the 2nd half

SHELSeff_sym_part2_E.lpp : as SHELSeff_sym_part2.lpp with large energy emittance (optimization beam sigma vector)

SHELSeff_sym_part3_7.lpp : as SHELSeff_sym2_part2.lpp with modified Q6-FP drift to be equal to 4.18 m

11/23/15

SHELSeff_All_v1.lpp : configuration with D8-part using SHELSeff_sym_part3_7.lpp quad fields

SHELSeff_All_v3.lpp : attempt to optimize SHELSeff_All_v1.lpp for smaller horizontal final spot and higher transmission

X' vs. dP/P

SHELSeff_sym_part0.lpp : ²⁵⁴No fragment distribution parameters

dP/P (vertical projection of the previous plot)

	deviation	Ι	FWHM	
	1.391e+01		2.789e+01	

X' vs. Y'

SHELSeff_sym_part0.lpp : ²⁵⁴No fragment distribution parameters

Y' (vertical projection of the previous plot)

-80

-40

deviation | FWHM 2.031e+01 | 4.276e+01

0

after "tuning": Y'(Phi) [mrad]: window projection

19-11-2015 18:34:06

-120

LISE++ [G:\2015 11 11 Dubna\SHELSeff svm part0.lpp]

80

40

Main purpose of the optimization is to provide highest transmission of ²⁵⁴Nb ions.

Principal purpose of this file to find solution for known optical constraints of the symmetrical configuration as

- Dispersive plane (Y/P)=0 (point to point), (T/T)=0 (point to parallel)
- Focal plane X/D=0, X/T=0, Y/P=0 achromatic with both focuses

Main purpose of the optimization is to provide highest transmission of ²⁵⁴Nb ions.

thus, main restriction for the dispersive point (SV-slits) is Y-size due to M-dipole gaps, Which does agree with constraints of the symmetrical configuration for the Dispersive plane (Y/P)=0 (point to point), (T/T)=0 (point to parallel)

Preliminary solution:

<mark>0</mark> 🔷	<quad></quad>	Quad 1	0.381	0.3800	+4.5800
d 🗖	drift	d_q12	0.761	0.2000	
F *	Fit	Q2a sR	0.961	0.0000	
<mark>0</mark> 🔷	<quad></quad>	Quad 2	0.961	0.3800	-4.5918
d 🗆	drift	d_q23	1.341	0.2000	
F 🐇	Fit	Q3a sR	1.541	0.0000	
<mark>0</mark> 🔷	<quad></quad>	Quad 3	1.541	0.3800	+1.9502

For the next conditions: Quad to vary and constraints:

1st quad was not modified

Ble	ocks with param	eters to vary
#01-q	Position@010:	Quad 2
#02-a	Position@013:	Quad 3

Active Constraint blocks

#01	@009:	s R < 80	Q2a sR
#02	@012:	s R < 80	Q3a sR
#03	@019:	sX< 200	sv sX
#04	@020:	R34 = 0	sv Yfoc
#05	@022:	R22 = 0	sv TT

See result on the next page

Initial +1.2153e-09 LISE fit reduced values

Parameters: #01-q: Quad 2 #02-q: Quad 3	LeftBound -1.0e+01 < +0.0e+00 <	Initial -4.592e+00 +1.950e+00	RightBound < +0.0e+00 < +1.0e+01		
Constraint values: #01: Q2a sR #02: Q3a sR #03: sv sX #04: sv Yfoc #05: sv TT	Initial +6.376e+01 +6.638e+01 +4.995e+01 +1.347e-15 -2.376e-16	Final	Precision 1.0e+00 1.0e+00 1.0e+00 1.0e-01 1.0e-01 1.0e-02	(Init-Des)/P 0 0 0 0 0 0	Desired < 80 < 80 < 200 = 0 = 0

==> "sv TT" : last fitting block global optical matrix and sigma vector

Beam sigma plot for the current beam sigma vector

SHELSeff_sym_part1.lpp : 1st results

1st part envelopes for all produced ²⁵⁴Nb ions

> Transmission 98.94%

MICHIGAN STATE

┠<mark>╏┨┨╶╏╴╲╱<mark>╱╶╴╴</mark>╴╂┨┨<mark>╺</mark>║╴┼┤║╶║</mark>

🖶 c:\program files (x86)\lise\results\SHELSeff_sym part2.fit_init	Ten 100 Ten 100 1
Initial +0.000367858 LISE fit reduced value	es
Parameters: LeftBound Initial #01-q: Quad 1 +0.0e+00 <	RightBound < +1.0e+01 < +0.0e+00 < +1.0e+01 < +3.0e+00 < +0.0e+00 < +1.0e+01
Constraint values: Initial Final #01: Q2a sR +6.475e+01 #02: Q3a sR +6.614e+01 #03: sv sX +4.678e+01 #04: sv Yfoc +4.373e-06 #05: sv TT -1.572e-06 #06: C2 sX +5.364e+01 #07: Q5a sR +7.778e+01 #08: Q6a sR +5.004e+01 #09: sym X-focus -3.525e-06 #10: sym Y-focus -1.004e-06 #11: sym X-disp +7.056e-06	Precision(Init-Des)/PDesired1.0e+000< 80
==> "sym X-disp" : last fitting block global 	optical matrix and sigma vector Format [mm-mrad] ix ====================================

First order matrix elements

- 0

┠<mark>┨┨┨╌╎╱╱╱╌╴</mark>╴┨┨┨╴<mark>┝</mark>╶┠╌╎┤╢╶╢

8

6

Length [m]

4

10

2

0

Length [m]

Beam sigma plot for the current beam sigma vector

Beam vector used for Optical Optimization							
_ "Opt.Beam"		1					
1.X 2	mm	• mm					
2. T 40	mrad	C cm					
3.Y 2	mm						
4. P 40	mrad						
5. L 0	mm	√ ∪κ					
6. D 7	%	🗶 Cancel					

SHELSeff_sym_part2.lpp : 1st results

1st and 2nd parts envelopes for all produced ²⁵⁴Nb ions

Transmission: Monte Carlo 97.5% Analytical 96.3%

MICHIGAN STATE

Analytical

statistics: 254No						
254No Alpha	a and Beta+	decay (Z=	102, N=152	:) 1	Nobelium	
All reactions total iso	otope rate	1.69e+3	pps			
and Overall isotope tra	ansmission	96.302	8			
Q1(tuning)		25	24	23	22	21
Q2 (C1)		25	24	23	22	21
Q3 (D22 1)		25	24	23	22	21
Q4 (D22_2)		25	24	23	22	21
Q5 (C2)		25	24	23	22	21
Q6 (D8)		25	24	23	22	21
Reaction		FusRes	FusRes	FusRes	FusRes	FusR
Ion Production Rate	(pps)	2.09e+1	4.58e+1	8.69e+1	1.43e+2	2.02
Total ion transmission	(%)	1.188	2.608	4.95	8.122	11.5
Total: this reaction	(pps)	1.69e+3	1.69e+3	1.69e+3	1.69e+3	1.69
X-Section in target	(mb)	1.38e-1	1.38e-1	1.38e-1	1.38e-1	1.38
Target	(%)	1.22	2.67	5.08	8.33	11.8
Unreacted in material	(%)	100	100	100	100	100
Q (Charge) ratio	(%)	1.22	2.67	5.08	8.33	11.8
Unstopped in material	(%)	100	100	100	100	100
tuning	(%)	97.53	97.53	97.53	97.53	97.5
X angular transmission	(%)	100	100	100	100	100
Y angular transmission	(%)	97.53	97.53	97.53	97.53	97.5
DTS1	(%)	100	100	100	100	100
slits 1	(%)	100	100	100	100	100
X space transmission	(%)	100	100	100	100	100
Y space transmission	(%)	100	100	100	100	100
DS1Q1	(%)	100	100	100	100	100

Monte Carlo

Step 1

MC transmission options	-	-		X
High Order Optics Calcul Use in calculations : only 1-st order through 2nd order	C through 3rd order C through 4th order C through 5th order	Highest Order in this configuration	For the Isotope group case only Sections independent calcualtions (all cross sections equal)	
✓ Angular ✓ Energy □ Lateral **	Use energy and I of detectors for T loss, and TKE va Use spatial resolut detectors for X and	ime resolution ^ N. OF, Energy if th Ilues ^ (ution of a nd Y values	o resolution will be taken into account ne selected block is optical or wedge Only energy resolution of first detector fter the selected block will be taken into account for TKE value	t
Angular Acceptance & E	ounds ceptances perture) inside blocks transmission E++ uses the still finits K- Out & Acceptance ere for the checkbox mode uf (ragments (including) int-separator) aboratory frame aboratory frame allow Rotation blocks use (A.Z.q) 0.001 < Sigma < 0.5 default 0.1	✓ Take into acco ✓ Take into acco ✓ Take into acco ✓ Take into acco ✓ Include charge in the total tran ✓ Take into acco ✓ Include charge in the total tran ✓ for Angular dist ✓ for Angular dist ✓ for Momentum ✓ Options for the "Inp ✓ Tadial" & "Angua ✓ Always por ✓ C Use X-coo	unt thickness defect of materials unt losses due to reactions in material state calculations smission """ time consumed option in takes place at the middle of target- ibutions and fission reactions sut file of ion rays" mode eviations from the file (" values sign dinate sign dinate sign	is ns ns m cel lp

Step 2

What isotope transmission to calculate?	X-coordinate After BLOCK	- Y-coordinate After BLOCK		Gate 1
Une tragment of interest. Chose manually here	Drift temp	▼ As Y Drift temp	▼ X	
Group of Isotopes already calculated by the Distribution method (Ncalc = 13)	ox	mm •×	mm	
r i i i i i i i i i i i i i i i i i i i	/ 🔿 X' (1)	mrad 🔅 X ' (T)	mrad	
to produce inside target	OY	mm CY	mm	
 Input ions ravs from file 	O Y' (P)	mrad C Y' (P)	mrad	<u>.</u>
emitted from target 🚔 - no file -	C dP/P	% C dP/P	%	Gate 2
	C Badial [ffX,Y]	mm C Badial [f(X.)) mm	
Chose fragment of interest	C Angle [ftX '.Y']]	mrad C Angle [f[X '.)	")] mrad	
	5		~	
A Element Z	C Energy	MeV/u C Energy	MeV/u	
254 No 102	C TKE	MeV 🔅 TKE	MeV	
	C Momentum	MeV/c C Momentum	MeV/c	<u> </u>
Alpha and Betarr	C Brho	1 °m O Brho	l °m	Gate 3
Charge states	C Erho	MJ/C C Erho	MJ/C	_
10: huming Cot	C Energy Loss	MeV C Energy Loss	MeV	-
	C Range	mm C Range	mm	
- Reaction mechanism	Envelope	m C Envelope	m	
Fusion -> Besidual	- Energy M	teV/mm _ Energy	MeV/mm	
Fusion y Hostava	Deposition /	particle Deposition	/particle	<u></u>
	C. Time of flight	ne C. Time of flight	ne	- Gate 4
AL MC transmission options	C Length	ns C Levelh	115	
00	Length			
	Stripper	- Start> Stripper		
	FaradayCup 2	- < Stop> FaradayCu	2 -	
Add in the 14 "Distribution" calculation				
previous MC				<u> </u>
plot wardow	Velocity	Velocity		
	C Velocity Z [cm/n	s] - Velocity [cr	n/ns] 👻	
M / Monte Carlo calculation				COVELODE
Quit CF 2D-plot	 Ion parameters (M,Z, 	.q) lon parameters (M,Z,q)	EINELOPE

How to get overall transmission?

SHELSeff_sym_part2_E.lpp : 1st results

┠<mark>┇╊┇╌<u>┠</u>╲╱╱<mark>╴╴</mark>╴╂┠┨<mark>┝</mark>╶╎╌╎╢╶║</mark>

Larger emittance

📮 c:\program files (x86)\lise	<pre>\results\SHELSeff_sym part2_E.</pre>	fit_init		
Initial +0.0253866	LISE fit reduced va	lues		
Parameters: #01-q: Quad 1 #02-q: Quad 2 #03-q: Quad 3 #04-q: Quad 4 #05-q: Quad 5 #06-q: Quad 6	LeftBound Initi +0.0e+00 < +4.834e -1.0e+01 < -4.601e +0.0e+00 < +1.889e -3.0e+00 < +1.881e -1.0e+01 < -4.593e +0.0e+00 < +4.845e	al RightBound ++00 < +1.0e+01 ++00 < +0.0e+00 ++00 < +1.0e+01 ++00 < +3.0e+00 ++00 < +0.0e+01 ++00 < +1.0e+01		
Constraint values: #01: Q2a sR #02: Q3a sR #03: sv sX #04: sv Yfoc #05: sv TT #06: C2 sX #07: Q5a sR #08: Q5a sR #09: sym X-focus #10: sym Y-focus #11: sym X-disp	Initial Final +6.475e+01 +5.043e+01 +5.043e+01 +6.865e-14 +1.114e-07 +6.515e+01 +8.078e+01 +5.351e+01 -1.040e-09 -3.457e-15 -2.526e-08	Precision 1.0e+00 1.0e+00 1.0e-01 1.0e-02 1.0e-03 1.0e-03 1.0e-03 1.0e-03 1.0e-02 1.0e-02 1.0e-02 1.0e-02	(Init-Des)/P 0 0 +1.114e-05 +8.028e-01 +1.040e-06 0 +2.526e-06	Desired < 80 < 200 = 0 < 80 < 80 < 81 < 80 = 0 = 0 = 0
==> "sym X-disp" : -9.918e-01 -1.0 +8.296e+00 -1.0 0 0 +4.116e-01 -1.0 0 0	last fitting block gl 40e-09 0 0 +1.003e+00 +4.577e+00 0 0 0 0 0 0 0 0 0 0 0 0	obal optical matr Format [: 0 0 0.3.032e-13 0 0 1.0 0 1.0	ix and sigma w mm-mrad] 2.526e-08 4.150e+00 0 0 1.284e+00 1.000e+00	Vector Beam(sigma) 1.98e+00 6.31e+01 2.01e+00 4.09e+01 1.41e+01 1.10e+01

SHELSeff_sym_part3_7.lpp : moving away the focal plain

1.05e+01 1.41e+01

1.10e+01

- 1. First three quads are frozen!
- 2. L=4.18 m corresponds to the real SHEL configuration (assuming D8 as drift)

🗧 c:\program files (x86)\lise	<pre>e\results\SHELSeff_s</pre>	ym part3_7.fit_init			Contraction of the local division of the loc
Initial +0.0053775	5 LISE fit r	educed values			
Parameters: #01-q: Quad 4 #02-q: Quad 5 #03-q: Quad 6 	LeftBound -3.0e+00 < -1.0e+01 < +0.0e+00 <	1.111101 +9.555e-01 -2.554e+00 +1.424e+00	RightBound +3.0e+00 +0.0e+00 +1.0e+01		
Constraint values: #01: C2 sX #02: Q5a sR #03: Q6a sR #04: sym X-focus #05: sym Y-focus #06: sym X-disp	Initial +6.515e+01 +7.922e+01 +7.543e+01 +1.199e-05 +2.127e-05 -2.605e-05	Final	Precision 1.0e+00 1.0e-03 1.0e-02 1.0e-03 1.0e-02 1.0e-02	(Init-Des)/ 0 +1.693e-01 +1.038e-03 +1.199e-02 +2.127e-03 +2.605e-03	P Desired < 80 < 81 < 80 = 0 = 0 = 0
==> "sym X-disp" : -4.560e+00 +1.1	last fitting :	block global o L ==== matrix 0	ptical matr Format [: 	ix and sigma mm-mrad] 2.605e-05	vector Beam(sigma) 9.12e+00
+7.402e-01 -2.1 0 0 0 0	93e-01 0 +4.01 +1.64	2e+00 +2.127e 8e+00 +2.493e		9.0278-01 0 0	1.33e+01 8.02e+00 1.05e+01

+2.493e-UI 0 0 1.

n 1.0

0

+1.284e+00

+1.000e+00

L	Q4	Q5	Q6
0.381	1.8807	-4.5932	4.8447
0.5	0.9816	-4.1051	5.1918
1	0.9575	-3.6066	3.4325
1.5	0.9559	-3.3021	2.6875
2	0.9557	-3.0862	2.2587
3	0.9556	-2.7889	1.7617
3.5	0.9554	-2.6789	1.5986
4.18	0.9555	-2.5542	1.4239

0 +4.116e-01 -6.161e-07 0 0

SHELSeff_sym_part3_7.lpp : moving away the focal plain

F Isotope Group : MC Yield Plot - Envelope

20-11-2015 11:26:41

LISE++ [G:\2015 11 11 Dubna\SHELSeff sym part3 7.lpp]

Contir

Length [m]

MC **Transmission** 96.74%

SHELSeff_sym_part3_7.lpp : where we are losing?

All parts envelopes for all produced ²⁵⁴Nb ions

Lost

SHELSeff_All_v1.lpp

Using SHELSeff_sym_part3_7.lpp quad fields

The Dispersion probably should be decreased!

SHELSeff_All_v1.lpp

Using SHELSeff_sym_part3_7.lpp quad fields

With the D8 dipole implementation we created large charge dispersion! (x/dQ ~ 10mm/unit)

Horizontal distribution of ²⁵⁴No ions in the final point

"Distribution" method

Monte Carlo method

OT, 11/23/15, East Lansing

SHELSeff_All_v1.lpp : ToF vs X_{final}

So, the final dispersion is not equal to 0, then what is about X–ToF correlation?

ToF resolution ~ 0.5 us??

Assume for simulations a little bit better

SHELSeff_All_v3.lpp

attempt to optimize SHELSeff_All_v1.lpp for smaller horizontal final spot and higher transmission

- It has been shown that with the symmetric configuration QQQ+EDDE+QQQ it's possible to obtain good separator optical properties, as focuses in both directions, momentum and charge zero dispersions, as well high 97% transmission of all produced ²⁵⁴No ions (1st order optics). This configuration is used to be easy to tune.
- The neutron flow made to implement a special dispersive block to move charge particles from central axis of the symmetric separator. The D8 magnet creates <u>large charge dispersion (x/dQ ~ 10 mm/unit)</u>, that decreases overall ²⁵⁴No ion transmission.
- 3. First attempts of the QQQ+EDDE+QQQ+D configuration optimization could not make zero momentum dispersion and avoid charge dispersion. These attempts made large horizontal magnification and worse focusing, even the spot has became a little bit smaller. Transmission is about ~90%.
- 4. It has been shown that Analytical calculations ("Distribution" method) fairly agree to Monte Carlo transmission calculations.

- It is necessary to note the significance* of electric dipole 2nd optics contribution, which was not applied for this analysis, and should be used in future.
- 2. The charge dispersion value should be calculated in LISE⁺⁺, and further be used in optimization process for constraints.
- 3. Consider (discuss) a possibility to implement a new additional disperse block at the end of separator to compensate dispersion.
- 4. Work more under the SHELSeff_All_v1.lpp configuration optimization to get better optical properties and higher transmission.