

1. PID introduction

1.1. "Mathematics"
1.2. PID assignment
1.2.1. Identification with us-isomers
1.2.2. A,Z -identification based on A/q-lines
1.3. PID resolution calculator
1.4. A - n*q , Z-q systematics

2. PID with stopped beams

2.1. GANIL 90s

- 2.2. MSU ²³⁸U @ A1900
- 2.3. MSU ²⁰⁸Pb @ A1900
- 2.4. MSU ²³⁸U @ A1900+S800BL
- 2.5. MSU ²³⁸U @ S800

2.6. GANIL ²³⁸U @ LISE3

2.7. RIKEN 2007

2.8. RIKEN 2017

2.8.1 Advanced technique (wedge for Z, range detector, A/q resolution)

2.9. Filtering with TKE

2.10. Spectrometers

2.10.1. VAMOS, Prism, Samurai, MSP144, S800

3. PID with fast beams3.1. A/q resolution3.2.RIKEN

4. PID features
4.1. Cleaning from charge states
4.1.1. FLNR
4.2. Reconstruction
4.3. "Global" (net) Calibration

5. Detector system requirements5.1. Pb-experiment5.3. Requirement Sketch

6. Irreplaceable helper for PID: LISE⁺⁺
6.1. Pseudo-MC and MC plots
6.2. LISE⁺⁺_{cute}
6.3. LISE for Excel

7. Summary

1. PID introduction

Lectures at the Euroschool on Exotic Beams 2013 August 26-31, 2013, Dubna, Russia

http://lise.nscl.msu.edu/paper/Euroschool2013/4_Identification.pdf

What do we want to know? **RIB case**

- 1. A
- 2. Z
- 3. q
- 4. Energy (property of incoming ion in detectors)

What do we measure?

Obtaining A, Z, q

		stopped beams	fast beams
The atomic number is determined from the combination of energy loss (ΔE) and time of flights (ToF) values according to the Bethe formula:	dE, ToF	$Z \approx \sqrt{\Delta E / \left(\frac{1}{\beta^2} \ln \left(\frac{1}{1}\right)\right)}$	$\frac{\overline{5930}}{1/\beta^2 - 1} - 1 \bigg)$
The fragment mass can be extracted in atomic units from the relativistic formula:	TKE, ToF	$A = \frac{TKE}{m_u c^2 (\gamma - 1)}$	ToF, B ρ $A/a = \frac{B\rho}{c}$
Where TKE is calculated as a sum of the energy loss values in each of the detectors in a multilayer telescope stopping the products. The charge state (q) of the ion evaluated from a relation based on the TKE, velocity and magnetic rigidity values:	ΤΚΕ, Βρ	$q = 3.33 \times 10^{-3} \frac{TKE \times \beta \gamma}{B\rho \ (\gamma - 1)}$	¹ γ ⁴ βγ m _u

PID assignment

- Calibration with the primary beam (or other reference line as sources)
- Unbound nuclei in the table of nuclides
- In-flight fragment tagging with prompt gamma
- Stopped fragment tagging with isomeric gamma-rays (more common)
- A,Z -identification based on known A/q-lines (new)
- X-ray from ions passing material
- Laser induced fluorescence
- Precise isobar selection with known masses

Identification with µs-isomers

VOLUME 55, NUMBER 3

MARCH 1997

New μ s isomers in T_z =1 nuclei produced in the ¹¹²Sn(63A MeV) + ^{nat}Ni reaction

R. Grzywacz,^{1,2} R. Anne,² G. Auger,² C. Borcea,³ J. M. Corre,² T. Dörfler,⁴ A. Fomichov,⁵ S. Grevy,⁶ H. Grawe,⁷
D. Guillemaud-Mueller,⁶ M. Huyse,⁸ Z. Janas,⁷ H. Keller,⁷ M. Lewitowicz,² S. Lukyanov,^{5,2} A. C. Mueller,⁶ N. Orr,⁹
A. Ostrowski,² Yu. Penionzhkevich,⁵ A. Piechaczek,⁸ F. Pougheon,⁶ K. Rykaczewski,^{1,10} M.G. Saint-Laurent,²
W. D. Schmidt-Ott,⁴ O. Sorlin,⁶ J. Szerypo,¹ O. Tarasov,^{5,2} J. Wauters,⁸ J. Żylicz¹

MICHIGAN STATE

Se UNIVERSITY

NSCL #05120 ²⁰⁸Pb (86 MeV/u) + Be

Gamma Information

Nucleus	E _{level} (keV)	Jπ	T _{1/2}	E _γ (ke∨)	lγ	γ mult.	γ mix. ratio	γ conv. coeff.
206HG	1068.54 <i>10</i>	2+	< 21 ns	1068.54 10	100	E 2		
206HG	2102.6 <i>2</i>	5-	2.15 µS <i>21</i>	1034.01 <i>10</i>	100	E3		

A - 2Q

Time of flight

LISE⁺⁺ identification plot of all nuclei produced in the reaction ¹²⁴Xe + Be (left panel) and those in coincidence with gamma-radiation (right panel)

http://lise.nscl.msu.edu/paper/isomers.pdf

Nuclear Instruments and Methods in Physics Research B 266 (2008) 4657–4664

2.7. Isomers in LISE++

The fragment identification method using correlation with µs isomer states is a powerful tool in modern experiments based on in-flight separation. An isomer database has been implemented in LISE++ to simulate fragment yields in coincidence with γ -ray and create an isomeric γ spectrum and identification plot in coincidence with γ -rays (see Fig. 2). The isomer database contains information (E_{γ} , I_{ratio}^{n} , $T_{1/2}$, E_{level} , I_{γ} , M_{γ}) about 2000 short-lived isomeric states extracted from NNDC, the GANIL isomer database [25] and other sources. Using this database the program is able to estimate the γ -rays yield: $Y_{\gamma}^m = I_{ratio}^m Y_{frag} \varepsilon_{gate} \varepsilon_{det}$, where Y_{frag} is the rate of implanted fragments, I_{ratio}^m is an isomeric transition ratio, ε_{det} is the detector efficiency, ε_{gate} is the probability to be in the γ -acquisition gate defined by $T_{1/2}$, the fragment velocity, the length of flight and the γ acquisition gate parameters (delay and width).

OlegTarasov@MSU 12/16/2020

A,Z-identification based on A/q-lines

A,Z -identification based on A/q-lines (Elaine's formula)

 $(A/q)_1$ isotope – should be belong to A/q line as 2, 2.5 or 3 $(A/q)_2$ isotope – should be the element as the first isotope ΔA – isotope mass difference

Energy loss (MeV) /FP_PIN/

- For Light Z
- Non-wedge settings
- ToF-calibration should be done to have A/q

dE-TOF

⁴⁰Ca (140 MeV/u) + Be (300 mg/cm²); Settings on ²⁰Ne; Config: DSDSWDDMMSMM

MICHIGAN STATE

<mark>₩ Se</mark> UNIVE<u>RSI</u>

All calculations were done for

- A1900 separator
- No wedge
- E(1st fragment)=120 MeV/u
- I1_slits = ± 1 mm

Under current conditions, the identification above Calcium is possible

All calculations were done for

- A1900 separator
- No wedge
- E(1st fragment)=120 MeV/u
- I1_slits = ± 1mm

Pay attention:

An extracted Z value won't be integer cause we are using in calculation an integer shift between the isotopes, but the second experimental "A/q" value is in reality equal to " M_{ion}/q ", where M_{ion} is not integer value

PID resolution calculator

	PID 1				resol	esolution calculator					r	Based on analysis of derivatives
Ion				Set-up								Of derivatives
A = 120				Energy =	50.00	MeV/u			0	<u> </u>		0/
Z = 50			Fligh	nt Length =	45.000	m				(<u> </u>
q = 49			1st(Z) detector	material =	14		245 425					LISE for Excel
M_isotope = 119.9022		1	lst(2) detector t	hickness =	50	mg/cm2	215.406	um			1000	
$M_{100} = 119.8755$												
M_101/q = 2.440433												http://lise.nscl.msu.edu/excel.html
Resolution		systematical			Mo	mentum R	esolutio	n				
sigma		(calibration)					Coordero					The new sheet "PID resolution calculator"
TOF = 0.100	ns	0.01	%			X-image	at target =	1.0	mm			
Eloss = 0.60	96	0.33	% (straggling)		X-magnific	cation @ dis	sp.plane =	2.0				allows to estimate resolution of ion
TKE = 0.40	96	0.10	%			X-dis	spersion =	30.0	mm/%			identification values as $Z.a.A.A/a$ and
Z =		0.2	%			Detector re	solution =	1.0	mm			othere in the sees of regular in flight
Momentum (Brho) = 0.0745	%	0.01	%		Mo	mentum Re	solution =	0.0745	%			others in the case of regular in-hight
		(-)										separation technique with magnetic rigidity
Measured values		error (G)	%									measurement. The user should provide
10F = 4/6.384/	ns Têm	0.111	0.023									
E1 Loss = 1092.78	I'm MeV	7.49	0.075									resolutions of timing, position, energy
TKE = 5993.77	MeV	24.71	0.412									detectors, input ion properties $(Z.q.A.E)$.
			0.122									length of flight and entired properties of
Deduced values		error (σ)	96									length of hight, and optical properties of
beta = 0.315104		0.00007	0.023									dispersive plane where Brho-
gamma = 1.053677		0.00003	0.003			c	contribution	in error				measurements take place The PID
velocity = 9.4461	cm/ns	0.00220	0.023		Brho	Beta	TKE	E1_loss	Zsyst	A/q	Z	mediationentia take place. The The
A / q = 2.446435		0.00195	0.080		0.075%	0.026%						resolution utility calculates final ID values
A/q(2)= 2.48728		0.002236	0.090	A/q2	0.076%	0.047%						and their errors, and provide information
PID values		error (ơ)	96									for partial contributions of massured
Z (Eloss) = 50		0.198	0.40			0.020%		0.34%	0.20%			ior partial contributions of measured
q = 49.000		0.206	0.42		0.075%	0.024%	0.412%					components (time, energy loss, total
A (from [A/g]*g integer) = 119.8753		0.498	0.42			0.050%	0.412%					kinetic energy magnetic rigidity)
A (from $[A/a]^*a$ measur) = 119.8753		0.512	0.43		0.075%	0.026%	0.420%					kinoto onorgy, magnoto ngiaty).
A-2q = 21.88		0.122			0.07	0.04	0.09					
A-3q = -27.12		0.159			0.11	0.02	0.11					
A-2Z * = 22.32		0.131						_		0.10	0.09	Univ 32-Dits IVIS Utfice

Two neighbor peaks with the same Amplitude (=1) and Sigma (=0.35)

If original peak area is equal to 1, then

0.86 of (<x>=0) peak with sigma = 0.35 goes to gate [-0.5, +0.5]. 0.14 are coming from neighbors

0.76 of (<x>=0) peak with sigma = 0.35 goes to gate [-0.4, +0.4]. 0.08 are coming from neighbors Systematics A-n·q Z-q

Z vs. Z-q plot allows to select a charge state

$A - n \cdot q$: mass resolution

	i	on				resol	ution		
Α	z	q	A/q	A/q	Α	Α	A-2q	A-2.5q	A-3q
					ΤΚΕ	(A/q) * q			
100	50	50	2.00	0.00159	0.415	0.427	0.079		0.236
120	50	49	2.45	1.95E-03	0.498	0.512	0.122	< 0.1	0.159
136	50	45	3.02	2.40E-03	0.565	0.581	0.206		0.107

- LISE PID resolution calculator
- ²⁰⁸Pb experiment preparation analysis (discussed here later)
- A-nq analysis in work of H.Suzuki et al., PRC96, 034604 (2017)

The use of A - 2Q allows significantly better resolution than A due to the nature of its error propagation. The error of A - 2Q is given by Eq.

$$\Delta_{A-2Q} = A \sqrt{\left(1 - \frac{2}{A/Q}\right)^2 \left(\frac{\Delta_A}{A}\right)^2 + \left(\frac{2}{A/Q}\right)^2 \left(\frac{\Delta_{A/Q}}{A/Q}\right)^2}$$

Here, Δ_{A-2Q} , Δ_A , and $\Delta_{A/Q}$ represent the errors of A - 2Q, A, and A/Q, respectively. It is found from the equation that the contribution from Δ_A is canceled in the vicinity of A/Q = 2 so that the resolution of A - 2Q can be almost as good as that of A/Q. (Such a cancellation also happens in the case of using A - 3Q for the region of A/Q = 3.)

						_					
lon				Set-up							
A = 120				Energy =	50.00	MeV/u					
Z = 50			Flig	ht Length =	45.000	m					
q = 49			1st(Z) detector	material =	14						
M_isotope = 119.9022			1st(Z) detector	thickness =	50	mg/cm2	215.406	um			
M_ion = 119.8753											
M_ion/q = 2.446435											
									_		
Resolution		systematica	I.		Mo	mentum R	esolutio	n			
sigma	1	(calibration))								
TOF = 0.100	ns	0.01	%			X-image	at target =	1.0	mm		
Eloss = 0.60	96	0.33	% (straggling)		X-magnific	ation @ di	sp.plane =	2.0			
TKE = 0.40	%	0.10	%		-	X-di	spersion =	30.0	mm/%		
Z =	1	0.2	96			Detector re	solution =	1.0	mm		
Momentum (Brho) = 0.0745	96	0.01	96		Mo	mentum Re	solution =	0.0745	%		
	1										
Measured values		error (σ)	%								
TOF = 476.3847	ns	0.111	0.023								
Brho = 2.5238	T*m	0.002	0.075								
E1_loss = 1092.78	MeV	7.48	0.684								
TKE = 5993.77	MeV	24.71	0.412								
	1										
Deduced values		error (σ)	%								
beta = 0.315104		0.00007	0.023								
gamma = 1.053677		0.00003	0.003			(contribution	in error			
velocity = 9.4461	cm/ns	0.00220	0.023		Brho	Beta	TKE	E1_loss	Zsyst	A/q	1
A / q = 2.446435	1 ·	0.00195	0.080		0.075%	0.026%		_			
A/ q (2)= 2.48728	1	0.002236	0.090	A/q2	0.076%	0.047%					
PID values		error (σ)	%								
Z(Eloss) = 50		0.198	0.40			0.020%		0.34%	0.20%		
q = 49.000		0.206	0.42		0.075%	0.024%	0.412%				
A (from TKE) = 119.8753		0.498	0.42			0.050%	0.412%				
A (from [A/q]*q_integer) = 119.8753		0.095	0.08								
A (from [A/q]*q_measur) = 119.8753		0.512	0.43		0.075%	0.026%	0.420%				
A-2q = 21.88		0.122		-	0.07	0.04	0.09				
A-3q = -27.12		0.159			0.11	0.02	0.11				
A-27 • - 22 32		0 121						-		0.10	0.0

PHYSICAL REVIEW C 96, 034604 (2017)

Discovery of new isotopes ^{81,82}Mo and ^{85,86}Ru and a determination of the particle instability of ¹⁰³Sb

H. Suzuki,^{1,*} T. Kubo,¹ N. Fukuda,¹ N. Inabe,¹ D. Kameda,¹ H. Takeda,¹ K. Yoshida,¹ K. Kusaka,¹ Y. Yanagisawa,¹ M. Ohtake,¹ H. Sato,¹ Y. Shimizu,¹ H. Baba,¹ M. Kurokawa,¹ K. Tanaka,¹ O. B. Tarasov,² D. Bazin,² D. J. Morrissey,² B. M. Sherrill,² K. Ieki,³ D. Murai,³ N. Iwasa,⁴ A. Chiba,⁴ Y. Ohkoda,⁴ E. Ideguchi,⁵ S, Go,⁵ R. Yokoyama,⁵ T. Fujii,⁵ D. Nishimura,⁶ H. Nishibata,⁷ S. Momota,⁸ M. Lewitowicz,⁹ G. DeFrance,⁹ I. Celikovic,⁹ and K. Steiger¹⁰

,Li ↔ MICHIGAN STATE ⇒ se university

The best representation for Z-separation, and the best mass resolution for ions around A/q=2.5

OT private communications from Eur. Phys. J. A (2018) 54: 66

2. "Stopped" beam experiments

Alpha + LISE3

,Li ↔ MICHIGAN STATE Şse university

PHYSICAL REVIEW C

VOLUME 55, NUMBER 3

MARCH 1997

New μ s isomers in T_z =1 nuclei produced in the ¹¹²Sn(63A MeV) + ^{nat}Ni reaction

rwacz, ^{1,2} R. Anne, ² G. Auger, ² C. Borcea, ³ J. M. Corre, ² T. Dörfler, ⁴ A. Fomichov, ⁵ S. Grevy, ⁶ H. Grawe, ⁷ maud-Mueller, ⁶ M. Huyse, ⁸ Z. Janas, ⁷ H. Keller, ⁷ M. Lewitowicz, ² S. Lukyanov, ^{5,2} A. C. Mueller, ⁶ N. Orr, ⁹ istrowski, ² Yu. Penionzhkevich, ⁵ A. Piechaczek, ⁸ F. Pougheon, ⁶ K. Rykaczewski, ^{1,10} M.G. Saint-Laurent, ² W. D. Schmidt-Ott, ⁴ O. Sorlin, ⁶ J. Szerypo, ¹ O. Tarasov, ^{5,2} J. Wauters, ⁸ J. Zylicz¹

Physics Letters B 332 (1994) 20-24

Identification of the doubly-magic nucleus 100Sn in the reaction 112Sn + natNi at 63 MeV/nucleon

M. Lewitowicz^a, R. Anne^a, G. Auger^a, D. Bazin^a, C. Borcea^b, V. Borrel^c, J.M. Corre^a,
T. Dörfler^d, A. Fomichov^e, R. Grzywacz^f, D. Guillemaud-Mueller^c, R. Hue^a, M. Huyse^g,
Z. Janas^{h,1}, H. Keller^h, S. Lukyanov^e, A.C. Mueller^c, Yu. Penionzhkevich^e, M. Pfützner^f,
F. Pougheon^c, K. Rykaczewski^f, M.G. Saint-Laurent^a, K. Schmidt^h, W.D. Schmidt-Ott^d,
O. Sorlin^c, J. Szerypo^{g,1}, O. Tarasov^e, J. Wauters^g, J. Żylicz^f

- Momentum acceptance (1%)
- MCP at Disperse FP for T and Bρ

PHYSICAL REVIEW C 79, 064318 (2009)

New neutron-rich microsecond isomers observed among fission products of ²³⁸U at 80 MeV/nucleon

C. M. Folden III,^{1,*} A. S. Nettleton,^{1,2} A. M. Amthor,^{1,2} T. N. Ginter,¹ M. Hausmann,¹ T. Kubo,³
 W. Loveland,⁴ S. L. Manikonda,⁵ D. J. Morrissey,^{1,6} T. Nakao,^{3,7} M. Portillo,¹ B. M. Sherrill,^{1,2}
 G. A. Souliotis,⁸ B. F. Strong,⁶ H. Takeda,³ and O. B. Tarasov^{1,9}

²³⁸U + Be

Fission of an 81–MeV/u ²³⁸U beam following abrasion by a Be target has been studied at the NSCL [15]. Recoiling fragments were spatially separated from the primary beam and identified using the A1900 fragment separator with magnetic rigidity varied in steps from 2.5–3.9 T m. A search for new neutron-rich nuclides was performed and has shown evidence for production of ¹²⁵Pd (see Fig. 5). It is necessary to note, that at the same time this isotope has been also observed in RIKEN [16] and GSI [17].

FIGURE 5. Partial identification plot [15] showing measured atomic number Z vs. the calculation function A-3Z for fully stripped ions obtained during a search for new isotopes.

FIGURE 6. Comparison [15] of the observed yield of Zn isotopes produced by in-flight fission of 238 U (80MeV/u) to calculations by the LISE⁺⁺ program [18].

OlegTarasov@MSU 12/16/2020 Good Z, short length of flight (moderate A)

MICHIGAN STATE

🐺 Se

Experiment #5120 : ²⁰⁸Pb @ A1900

NSCL research discussion

http://lise.nscl.msu.edu/paper/208pb/2009_208Pb_RD.pdf

AIP Conference Proceedings Volume 1224, ISBN: 978-0-7354-0768-8 Preprint MSUCL1409, NSCL/MSU 2009; http://groups.nscl.msu.edu/nscl_library/nscl_preprint/MSUCL1409.pdf

New ORTEC SBD detectors* (D~20mm) have been substituted during PIN diodes 500 um (50x50mm), * - though measured own resolution before and after the experiment for α-particles was about 20-22 KeV at the GANIL experiment with the U-beam · It is necessary to test them with other beams (Kr,Xe)

No wedge, small dp/p, RFstop

- I2-Sci X-position problem during the experiment ☺
- · No Kapton in I1 (no reference lines, difficult analysis : set of charge states, different velocities) (3)
- I2-wedge 26 mg/cm² (Sci) is too thick for heavy ions Z~70-80 ☺
- TOF I2&FP resolution is not good enough (short path) ☺
- TOF RF-Pin unstable (3)
- It is possible to work at dp/p =0.5% with NI-target (67mg/cm²) between beam charge states ©

MICHIGAN STATE

₩ Se UNIVERSITY

With I2-Sci as wedge, short length

e09063 : Projectile fragmentation of ²³⁸U

2016: E.Kwan – spokesperson

 $B\rho$ measurement is still a huge issue: Location, detectors, charge states

OlegTarasov@MSU 12/16/2020

e09063 : Projectile fragmentation of ²³⁸U

JI ↔ MICHIGAN STATE Se UNIVERSITY

Experiment #12006 : ²³⁸U @ S800

MICHIGAN STATE 🐺 Se UNIVERSI

M.Bowry, J.Berryman, A.Gade et al.

To reproduce results I used sig(ToF) = 175 ps, that according to A.S. is reasonable in the case of ToF configuration of e12006 experiment due to mostly Sci-scintillator resolution.

Short length dE with IC, moderate

No q, poor A/q

E12006 : Cross section and charge state distributions

•

Li 🔤

MICHIGAN STATE

🐺 SE UNIVERSI

Eur. Phys. J. A (2018) 54: 66

Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator

O.B. Tarasov^{1,a,b}, O. Delaune^{2,c}, F. Farget², D.J. Morrissey^{1,3}, A.M. Amthor⁴, B. Bastin², D. Bazin¹, B. Blank⁵, L. Cacéres², A. Chbihi², B. Fernández-Dominguez⁶, S. Grévy⁵, O. Kamalou², S.M. Lukyanov⁷, W. Mittig^{1,8}, J. Pereira¹, L. Perrot⁹, M.-G. Saint-Laurent², H. Savajols², B.M. Sherrill^{1,8}, C. Stodel², J.C. Thomas², and A.C. Villari¹⁰

- Beam was inclined 3 deg. on target
- ToF: Good
- TKE: Good
- Bp: moderate [dispersion 19 mm/%, FP-X corrections]
- dE : moderate [thin dE detectors, middle Z]

Qraw:Zm0

60

¹⁹⁸Pt experiment : fragment-separator & spectrometer

NSCL E15130

"Search for isotopes and isomers in the Hf region"

(UML)

(MSU)

(UML)

Pls:

- Partha Chowdhury
- Oleg Tarasov
- Andrew Rogers

- Working between primary beam charge states
- Try to avoid in-flight detectors (charge state production)
- No in-flight detectors in Dispersive plane ("wedge" property)
- "Separator + Long Spectrometer" method

"Search for isotopes and isomers in the #f region"

e15130 experiment : from dE, ToF, TKE, Bp to A, Z, q

LI ↔ MICHIGAN STATE Şe UNIVERSITY

OlegTarasov@MSU 12/16/2020 It is possible to suggest about ten isotopes from dE-ToF-TKE plots. No.. More than hundred (5*6*4)!

Experiment #e15130; July 2019 @ NSCL/MSU ¹⁹⁸Pt (85 MeV/u) + Be (47 mg/cm²) -> Wedge -> ¹⁸⁹Hf⁷⁰⁺

selection Z-q=2

- ToF: Excellent
- TKE: Good
- Bp: moderate [strip detector (3 mm), dispersion 50 mm/%]
- **dE** : moderate [thin dE detectors, high Z]
- OlegTarasov@MSU 12/16/2020

• q: good

selection Z-q=3

- A: good
- Z: moderate poor

- 1. We brought the PID subroutines to implement into BigRIPS acquisition software
- 2. Si-detectors for dE and Nal for TKE
- 3. Good PID at first, then Nal detector has been destroyed (not due to high rate)

-1

- 1. Mostly performing PID with Z vs. A/q plots without TKE measurements
- 2. Attempts with TKE-PID in 2010-2011 failed
- 3. 2017 : using TKE for PID
 - Bρ: outstandingTKE: goodβ: excellentdE: moderate
 - Advanced detector development
 - Optics & detectors :
 - \circ Bp & trajectory reconstruction
 - A/q-value : separator record
 - New PID techniques:
 - Identification Z based on E-loss in wedge
 - Using "range" technique for PID

Thursday 17 December 2020 6.00 am – 6.45 am: Fukuda Naoki Particle identification at BigRIPS Separator

PHYSICAL REVIEW C 96, 034604 (2017)

Discovery of new isotopes ^{81,82}Mo and ^{85,86}Ru and a determination of the particle instability of ¹⁰³Sb

H. Suzuki,^{1,*} T. Kubo,¹ N. Fukuda,¹ N. Inabe,¹ D. Kameda,¹ H. Takeda,¹ K. Yoshida,¹ K. Kusaka,¹ Y. Yanagisawa,¹ M. Ohtake,¹ H. Sato,¹ Y. Shimizu,¹ H. Baba,¹ M. Kurokawa,¹ K. Tanaka,¹ O. B. Tarasov,² D. Bazin,² D. J. Morrissey,² B. M. Sherrill,² K. Ieki,³ D. Murai,³ N. Iwasa,⁴ A. Chiba,⁴ Y. Ohkoda,⁴ E. Ideguchi,⁵ S. Go,⁵ R. Yokoyama,⁵ T. Fujii,⁵ D. Nishimura.⁶ H. Nishibata.⁷ S. Momota.⁸ M. Lewitowicz.⁹ G. DeFrance.⁹ I. Celikovic.⁹ and K. Steiger¹⁰

DISCOVERY OF NEW ISOTOPES 81.82 Mo AND ...

PHYSICAL REVIEW C 96, 034604 (2017)

FIG. 3. The Z versus Z - Q plot for projectile fragments produced in the reaction of 124 Xe + Be (4.03 mm) at 345 MeV/nucleon. The experimental conditions are given as the 85 Ru setting in Table I. The red solid lines indicate the gate used to select fully stripped events of which the gate width is taken to be $|Z - Q| \leq 0.5$. See the text.

Nuclear Instruments and Methods in Physics Research B 317 (2013) 323-332

Identification and separation of radioactive isotope beams by the BigRIPS separator at the RIKEN RI Beam Factory N. Fukuda *, T. Kubo, T. Ohnishi, N. Inabe, H. Takeda, D. Kameda, H. Suzuki

Wednesday 16 December 2020 10:10 am –10:55 am: Marc Hausmann FRIB Fragment Separator Overview and Opportunities for Advanced Detector Systems

"Stopped" beam experiments: filtering with TKE

⁷⁶Ge(130MeV/u) + W,Be : PID, resolution

For all particles stopped in the Si-telescope in the production runs

OT et al. Phys.Rev.Lett. 102, 142501 (2009) OT et al. Phys.Rev.C. 80, 034609 (2009) q-resolution is used to be always better than Zresolution

Good filter for new isotopes search, because in this region at these energies Z=q

12

2.8

2.9

3.0

Filtering

- Double position (Sci, PPAC) @ F3, F5, F7
- Double timing signals (Sci, PPAC) @ F3, F5, F7,
- Advanced techniques against pile-ups at PPACs & Sci,
- Six PIN diodes (6 cross checking Z-identification),
- TKE measurement (Csl)
- Additional veto detector after Csl

• •

A/q

3.1

Spectrometers

VAMOS, SAMURAI, PRISM, MAGNEX, S800, HRS, MSP144, ...

Wednesday 16 December 2020

²³⁸U @ S800 experiment example was shown

6.55 am –7.40am: Masaki Sasano "Particle identification of RI beam in Sn region with the SAMURAI spectrometer

7.40 –7.55 am: Salvatore Calabrese The MAGNEX spectrometer at INFN/LNS and its challenges within the NUMEN project

9.25 am –10.10 am: Jorge Pereira Particle identification with the S800 Spectrograph – Current status and future plans

900

E (MeV)

1000

1100

3. "Fast" beams experiments

When and where we can separate charge states?

 (\mathfrak{S})

NSC

LI [↔] <u>MICHIGAN STATE</u> Se <u>university</u>

A/q resolution 0.0024 : Hg (Z=80) isotopes

A/q resolution 0.0014 : Hg (Z=80) isotopes

A/q resolution 0.0074 : Hg (Z=80) isotopes

Resolution Hg-isotopes around A/q=2.6: d(A/q)=0.00074sigma TOF = 0.050 ns 40 35 —195Hg75 Nomentum (Brho) = 0.0479 —196Hg75 30 —197Hg76 Set-up -198Hg76 Energy = 70.00 MeV/u 25 Flight Length = 70.000 m -200Hg77 -201Hg77 20 -202Hg78 Momentum Resolution -203Hg78 15 -205Hg79 X-image at target = 1.0 mm 10 -206Hg79 X-magnification @ disp.plane = 1.5 mm/% X-dispersion = 100.0 -208Hg80 Detector resolution = 1.0 mm 5 Momentum Resolution = 0.0180 % -209Hg80 -SUM Resolution 7.0E-04 0 Brho Beta 2.59 2.6 2.61 2.62 2.58 0.017% 0.021% A/q

LI [↔] <u>MICHIGAN STATE</u> Se <u>university</u>

Journal of the Physical Society of Japan 87, 014202 (2018)

https://doi.org/10.7566/JPSJ.87.014202

Identification of New Neutron-Rich Isotopes in the Rare-Earth Region Produced by 345 MeV/nucleon ²³⁸U

Naoki Fukuda^{1*}, Toshiyuki Kubo^{1†}, Daisuke Kameda¹, Naohito Inabe¹, Hiroshi Suzuki¹, Yohei Shimizu¹, Hiroyuki Takeda¹, Kensuke Kusaka¹, Yoshiyuki Yanagisawa¹, Masao Ohtake¹, Kanenobu Tanaka¹, Koichi Yoshida¹, Hiromi Sato¹, Hidetada Baba¹, Meiko Kurokawa¹, Tetsuya Ohnishi¹, Naohito Iwasa², Ayuko Chiba², Taku Yamada², Eiji Ideguchi³, Shintaro Go³, Rin Yokoyama³, Toshihiko Fujii³, Hiroki Nishibata⁴, Kazuo Ieki⁵, Daichi Murai⁵, Sadao Momota⁶, Daiki Nishimura⁷, Yoshiteru Sato⁸, Jongwon Hwang⁸, Sunji Kim⁸, Oleg B. Tarasov⁹, David J. Morrissey⁹, and Gary Simpson¹⁰

Thursday 17 December 2020 6.00 am – 6.45 am: Fukuda Naoki Particle identification at BigRIPS Separator

lon				Set-up					
A = 200				Energy =	250.00	MeV/u			
Z = 74			Flig	ht Length =	46.500	m F3-	·F7		
q = <mark>7</mark> 3			1st(Z) detector	material =	14				
M isotope = 199.9936		:	lst(Z) detector t	thickness =	200	mg/cm2	861.623	um	
M ion = 199.9535									
$M_{ion/a} = 2.739089$									
Resolution		systematical			Mor	nentum R	Resolution	า	
sigma		(calibration)				re	constru	ction	
TOF = 0.050	05	0.005	96			X-image	at target =	01	mm
Eloss = 0.75	96	0.40	% (straadina)		X-magnific	ation @ di	sp.plane =	1.0	
TKE = 0.45	96	0.05	%			X-di	spersion =	36.0	mm/%
Z =		0.2	96			Detector re	solution =	0.5	mm
Momentum (Brho) = 0.0142	96	0.01	96		Mor	nentum Re	solution =	0.0142	%
Measured values		error (σ)	94						
TOF - 252 1534		0.052	0.020						
Brbo = 6 6405	7*m	0.032	0.017		Pro	hably it	's not e	nouah	
F1 loss = 3556.97	MeV	30.22	0.850			bo limit	5 HOL C	nougn	•
TKF = 49988 38	MeV	226.33	0.453						
TRE - 45500.00	NIC V	220.55	0.455	· /		ease fli	ght leng	jth,	
Doducod valuos		error (0)			Dec	rease e	energy		
beta e 0.615158		0.00013	70		•				
Deta = 0.015158		0.00013	0.020				contribution	in error	
gamma = 1.206360		0.00016	0.012		Brbo	Bota		E1 loss	Zevet
$\sqrt{a} = 2.720090$	cmyns	0.00377	0.020		0.017%	0.032%	INC	E1_1055	Loyou
A/ q = 2.755065		0.00102	0.037	0.1.0.2	0.017%	0.033%			
DID values		0.001241	0.045	Aryz	On the	limit			
PID values			2.17		011 410				
Z (Eloss) = 74		0.347	0.47		0.0178	0.017%	0.4539/	0.42%	0.20%
q = 75.000		0.331	0.45		0.01/%	0.026%	0.453%		
A (100111Kc) = 199.9555		0.913	0.46		Good	0.059%	0.455%		
$A (from [A/q] \cdot q - finteger) = 199.9555$		0.074	0.04		0.017%	0.02264	0.4548		
$A_{1000}[A/q][q][measur] = 199.9555$		0.359	0.40		0.02	0.055%	0.454%		
A - 2q = -33.93		0.258			0.05	0.08	0.09		
A-34 - 15.03 A-27 * = 54.69		0.112			0.04	0.00	0.05		
A 22 - J7.0J		0.207							

4. PID features

Charge states "cleaning"

E12022 : PID

PI: M.Famiano

- Mass measurement
- Disperse mode
- PIN-telescope at the S800 FP
- Bρ measurement at the S800 TP by MCP
- Intermediate energy, Long flight length, very high dispersion

Resolution : Z

Good!

Average of
$$|Z_{calc} - Z_{peak}| = 0.057$$
 in Z=32-50 region

 σ (Z) = 0.157 for all Z=42 isotopes, σ (Z) = 0.153 for ¹⁰⁸Mo

Resolution : TKE & q

3rd and 4th PIN-diodes not well depleted

MICHIGAN STATE

🐺 Se UNIVERSITY

Average of $|q_{calc} - q_{peak}| = 0.29$ (!) in Z=32-50 region $q_{measured} = 42.24$ with $\sigma(q) = 0.27$ for ¹⁰⁸Mo⁴²⁺, for all Z=42 full-stripped isotopes $\sigma(q) = 0.274^*$

Actually $\sigma(q)$ is not so bad, but charge state overlapping was observed in the Z-q plot. So, the "banana" selection method can help. See next slides

Ζ

A/q

This method can be used only in the case of

- perfect Z and A/q resolution
- far from integer values of A/Z (2,3)
- Only to separate Z-q =0 and Z-q=1.

Zi = int(Z+0.5) Am3Z = (A/q - 3) * ZiAm3Zi = int(Am3Z + 1.5) dA3mZ = Am3Z - Am3Zi

So, in our case we are working around 2.5, and no helium-like products

Initial plot without filtering

The red color shows that charge states will be cut for specific isotope of Z=42

For "fast" beams In RIKEN and MSU to get clean A-xn plots, which are more convenient to use for counting and gating

Z	42								
Α		Z	-q		Α		Z	-q	
	1	2	3	4		1	2	3	4
80	0.049	0.000	0.154	0.421	100	0.439	0.000	0.308	0.474
81	0.024	0.050	0.231	0.474	101	0.463	0.050	0.231	0.368
82	0.000	0.100	0.308	0.368	102	0.488	0.100	0.154	0.263
83	0.024	0.150	0.385	0.263	103	0.488	0.150	0.077	0.158
84	0.049	0.200	0.462	0.158	104	0.463	0.200	0.000	0.053
85	0.073	0.250	0.462	0.053	105	0.439	0.250	0.077	0.053
86	0.098	0.300	0.385	0.053	106	0.415	0.300	0.154	0.158
87	0.122	0.350	0.308	0.158	107	0.390	0.350	0.231	0.263
88	0.146	0.400	0.231	0.263	108	0.366	0.400	0.308	0.368
89	0.171	0.450	0.154	0.368	109	0.341	0.450	0.385	0.474
90	0.195	0.500	0.077	0.474	110	0.317	0.500	0.462	0.421
91	0.220	0.450	0.000	0.421	111	0.293	0.450	0.462	0.316
92	0.244	0.400	0.077	0.316	112	0.268	0.400	0.385	0.211
93	0.268	0.350	0.154	0.211	113	0.244	0.350	0.308	0.105
94	0.293	0.300	0.231	0.105	114	0.220	0.300	0.231	0.000
95	0.317	0.250	0.308	0.000	115	0.195	0.250	0.154	0.105
96	0.341	0.200	0.385	0.105	116	0.171	0.200	0.077	0.211
97	0.366	0.150	0.462	0.211	117	0.146	0.150	0.000	0.316
98	0.390	0.100	0.462	0.316	118	0.122	0.100	0.077	0.421
99	0.415	0.050	0.385	0.421	119	0.098	0.050	0.154	0.474

MSP-144 magnetic spectrometer with dE-E ionization chamber @ FLNR (Dubna)

$$dE \approx \frac{AZ^2}{E},$$
$$E = k(Bx)^2 \frac{q^2}{A}$$

Assuming q=Zfor the identification matrix

O.B. Tarasov et al. /Nuclear Physics A 629 (1998) 605-620

607

MICHIGAN STATE

Fig. 1. Identification matrix (A - 2Z, Z) of the products of the ${}^{32}S(14.5 \text{ MeV}/A) + C$ reaction obtained at a magnetic field B = 0.7975 T. The left solid line passes through the completely stripped nuclei with zero isotopic spin. The right curve discriminates between regions of nuclei with charge q = Z and q = Z - 1.

Inverse technique. Reconstruction (e12006)

http://lise.nscl.msu.edu/paper/2016/Reconstruction_with_LISE.pdf

"Global" (net) calibration

"Global" (net) calibration

Finally, it has to be published.... Or at least documented

It is necessary to use LISE for Excel

Why global?

					PIN1	PIN2	PIN3		A19 SCI	S80 SCI		
e1 slope=	1.2255	PIN1		Thick	117.9	118.1	240.5		11.3000	16.3		mg/cm2
e2 slope=	1.6839	PIN2			508	509	1036					micron
e3 slope=	1.7756	PIN3		Z	14	14	14		6	6		
e4 slope=	3.7287	PIN4							11.3000	16.3		
_			A19 Sci	tke 0 add A19=	0.1100	ratio to pin	MeV/ch					
			S8 Sci	tke 0 add=	0.1928	ratio to pin	MeV/ch					
				tke 1=	1.2273							
e1 offset=	-15.4	PIN1		tke 2=	1,7219					distance		
e2 offset=	32.2	PIN2		tke 3=	1 8932					a rf1=	-0.02583	ns/chan
e3_offset=	331.1	PIN3		tke 4=	3 5195					b rf1=	774 390	ns
e4 offset=	-77.7	PIN4		tke offset =	0.000					c rf1E=	0.00000	
01_011001				tke_offset2 =	0.000					d_rf1E=	0.00000	
	sum 1-3	270 129		tke_offset3 =	0.000					bunch=	54 39	ns
		210.120			0.000					barron	01.00	
										RF1a=	0.620	
				chi tke	0.121					RF1b=	0.320	
				chi+dE	18.942	Floss model				RF sum=	0.941	
	all			GIIIIGE	10.342	Lioss model				in _aum=	0.541	
ahi dad	0.200			CLOPAL	02.04		/			- 40-	0.004502	
cni_de1=	0.269			GLUDAL	52.54					a_AS=	-0.061593	
chi_de2=	2.118									D_AS=	757.9806	
chi_de3=	10.498									chi_AS=	0.4277	
chi_de4=	0.011											
chi_sum=	12.90			a3Z=	5.69454E-03					time_chi=	5.218	
				a2Z=	-1.852E-02			<u> </u>				
				aZ=	7.957E+00					dAoQ_ch=	0.015	
VC=	0.29979246			bZ=	0.000							
Eloss_option=	0			kbeta=	0					dTKE S800=	0.040	
				LIMIT_Z=	100.0000							
DispersionI2=	-59.12491	mm/%		a2ZH=	0.0000							
beta_shift=	0.0047			aZH=								
				bZH=								
				ALL=	0.2841				b	rho1_value =	3.18530	3.1853
									b	rho2_value =	3.17480	3.1748
z_i2	17.486	17.486	17.486									
z_i4	35.563	35.563	35.563									
z_s8	82.541	82.120	82.898									
L_i0i2	17.486	17.486	17.486									
L_i0i4	35.563	35.563	35.563									
L_i0s8	82.541	82.120	82.898									
L_i2i4	18.077	18.077	18.077									
L_i4s8	46.978	46.557	47.335									

- 1. For all energies
- 2. For all particles
- 3. No energy loss models
- 4. Dead layers are taken into account
- 5. Help to find discrepancies in data, calibration

		238069+	23#U##+	23#U##+	234049+	234P+#9+	233P	232P	231P+##+	230P+##+	230TL##+	229TL#7+	22#16#7+	226Ac\$64	225Ac#6+	11
	Waight	0.2	0.2	0.2	0.2 chargest	0.2 chargest	0.2 chargest	0.2 chargest	0.2 chargest	0.2 chargest	0.2 chargest	0.2 chargest	0.2 chargest	0.2 chargest	0.2 chargest	
1 ar \$ asly	A1900 SCI	0	0	1	1	1	1	1	1	1	1	1	1	1	1	
	Run D-1-40 A	132	131	130	136	136	136	136	136	136	136	136	136	136	136	
	Brhs34_0	4.5400	3.0830	3.0830	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	
	A	238	238	238	234	234	233	232	231	230	230	229	228	226	225	
	Z	92	92	92	92	P a 91	P a 91	P a 91	P a 91	Pa 91	90	90	90	A< 89	A< 89	
aftertarget	e	69	**	**	89	89	89	**	**	**	**	87	87	86	86	
	Brks A1900 Brks S200	4.5400	3.0830	3.0830	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	3.1853	
	Energy A1900	\$0.1	60.7	60.7	68.3	68.3	68.8	67.9	68.5	69.1	69.1	68.1	68.7	68.4	68.9	
	Energy Stee Robustee	\$0.1 d 5d00	60.7	57.6	65.4	65.4	66.0	65.0 3 11d8	65.6 3 115d	66.2	66.3 3 1174	65.3	65.9	65.5	66.1	
	Bate12	0.390	0.3444	0.3444	0.3632	0.3632	0.3646	0.3624	0.04 7	1000	0.3651	0.3629	0.364	0.3634	0.3648	
	Bate3	21	3444		C		0.200	0.554	0.35 8	0.3582		n	0.351	K	nc	
	6		0651			1.	1.000	1.0 98	1.0704				1.070	1.0 03		
	Time Target- A1999FP	304.2	344.5	344.5	326.6	326.6	325.4	327.4	326.1	324.9	324.9	326.9	325.7	326.4	325.2	
	A/Q	3.450	2.705	2.705	2.630	2.630	2.618	2.637	2.625	2.614	2.614	2.633	2.621	2.628	2.617	
	н	238.05	238.05	238.05	234.04	234.04	233.04	232.04	231.04	230.03	230.03	229.03	228.03	226.03	225.02	
Metty	Ei	80.1	60.7	57.6	65.4	65.4	66.0	65.0	65.6	66.2	66.3	65.3	65.9	65.5	66.1	
MaWa	efter Stee_SCI	76.4	56.2	53.1	61.1	61.2	61.8	60.8	61.3	61.9	62.1	61.0	61.6	61.3	61.9	-
MeWu	after E2	11.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MaWu	after E3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_
MeV	462	9150.0	5288.8	4087.8	6706.0	6905.2	7027.8	6621.5	6744.6	6868.1	7065.0	6659.8	6782.9	6696.9	6820.0	
MøV MøV	4E3 4E4	2650.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
channel	dE1	5213.7	6550.0	6766.9	6206.0	6108.9	6072.2	6137.7	6096.9	6070.8	5954.0	6019.6	5981.6	5887.8	5847.0	
channel	462	5368.8	3026.9	2369.8	3759.6	3848.4	3908.7	3704.4	3777.4	3834.3	3933.8	3724.1	3797.8	3764.9	3840.9	
channel	4E4	1197.6														
Mall	4E1c	6374.2	8011.9 E12e 2	\$277.7	7590.3	7471.3	7426.3	7506.6	7456.6	7424.6	7281.4	7361.8	7315.3	7200.3	7150.3	-
MeV	dE3c	2386.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MøV	dE4c	0.0	0.0	0.0	0.0	0.0	0.0 -56.d	0.0	-29.3	0.0	0.0 -69.d	0.0 -d2.9	0.0	-39.2	0.0	_
	44+2	77.2	159.6	65.1	343.0	392.7	413.7	351.3	351.6	379.3	408.6	356.5	355.6	325.0	320.0	
	44+3						_									
	chi_de1	0.00	0.20	1.62	0.0	0.0	09	0.02	0.02	0.06	0.13	0.05	0.06	0.04	0.05	_
	chi_do2 chi_da3	0.13	0.96	0.21	3.5	JH	\$7	3.73	3.67	4.19	4.73	3.82	3.73	3.15	3.00	
	chi_de4															
	rum_chi_de	0.13	1.16	1.83	3.51	4.54	4,96	3.75	3.69	4.25	4.86	3.87	3.79	3.20	3.05	_
MaU	TEF	19067 3	1ddd6.2	14446.2	15920 d	15930.2	16.0dd 3	15761.0	15824.8	15222.4	15229.0	156.05 d	15664 3	15449 7	15513.4	
S8_SCIFI44	444 TKE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	E_tks_add A19_Sci E_tks_add St_Sci	0	0 1263	745	683 1196	672	668	675	671	668	655	662 1160	658 1153	648 1135	643 1127	
	Si-telerape	17835	13251	12386	14090	14124	14183	13912	13987	14053	14081	13801	13881	13709	13790	
MøV	TKE c 4TKE	18840.0	14513.6	14434.7	15969.5	15973.8	16021.5	15770.1	15833.4	15891.4	15883.9	15623.2	15692.0	15491.8	15560.2	
	dtks_chi	0.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	TOF, Mr	706.0	799.5	\$10.4	766.5	766.4	763.4	768.3	765.4	762.4	762.2	767.1	764.1	766.0	762.9	
BF1A	TOF	564.57	1255.66	717.42	300.75	301.27	408.00	223.61	335.79	446.94	452.96	275.21	384.91	321.65	440.66	
	bunch currect	1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	
	TOFe	705.4	796.4	\$10.3	766.6	766.6	763.9	768.6	765.7	762.8	762.7	767.3	764.4	766.1	763.0	
	4TOF RF1e_chi	0.58	3.17	0.11	-0.09 0.02	-0.23	-0.42	-0.29	-0.36	-0.46	-0.47	-0.13	-0.31	-0.13	-0.10 0.02	
RF1B	TOF	2654.83	3354.92	2811.48	2381.22	2380.92	2491.20	2301.25	2417.87	2530.77	2537.30	2351.90	2467.52	2402.33	2522.49	2
	bunch currect	0	-2	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
	TOFe	705.8	796.5	\$10.6	767.3	767.3	764.4	769.3	766.3	763.4	763.3	768.0	765.1	766.7	763.6	
	4TOF BF14_chi	0.17	3.00	-0.20	-0.75 0.15	-0.92	-1.01	-1.02	-0.98	-1.03 0.21	-1.03 0.21	-0.89	-0.91	-0.78	-0.72	
LAS LAS	TOF, M			465.9	439.9 5113.64	439.8	438.1 5142.17	441.0 5093.24	439.2 5122.74	437.5	437.3 5154.74	440.2 5107.34	438.5 5136.74	439.5 5121.19	437.7 5152.4×	
AS	TOFe			468.80	443.02	442.87	441.26	444.27	442.46	440.66	440.48	443.40	441.59	442.55	440.62	
	4TOF 4TOF_chi			2.9	3.1	3.1	3.2	3.3	3.2	3.2	3.2	3.2	3.1	3.0	2.9	
CALC	bota_lart2 bota_lart	0.1523	0.1195	0.1117	0.1251	0.1252	0.1261	0.1244	0.1254	0.1265	0.1266	0.1249	0.1259	0.1254	0.1265	
ORLO	gamme_lart	1.0861	1.0657	1.0610	1.0691	1.0692	1.0697	1.0687	1.0693	1.0699	1.0700	1.0690	1.0696	1.0693	1.0699	
	45_+	44.8	55.0	58.2	52.9	52.9	52.5	53.1	52.8	52.4	52.4	53.0	52.6	52.8	52.4	

5. Detector system requirements

Time resolution

It is planning to use for TOF-measurement the MCP detector (or Scintillator) in the intermediate focal plane (12) and the Sidetector in the final focal plane.

E (¹²³Ag) = 90.93±0.165 MeV/u TOF-detectors: Scintillator (20 mg/cm²) and Si (501 µm)

	Component	σ(TOF)	FWHM(TOF)
	Component	ns	ns
	Fragment Energy	0.115	0.271
	Experiment	0.271	0.444
	detectors	0.149	0.352
	detectors		0.24%

Resolution time ~ Thickness * / Area y,

http://lise.nscl.msu.edu/paper/2006_february_detectors.pdf

鐵

Assume the ²³⁸U beam \rightarrow fission (Z=25-75) and fragmentation (Z=75-92)

different ranges: where and how to get qualitative dE & TKE measurement for both reaction product types?

- 1. PIN-diode telescope : good resolution, but large numbers for high energy, radiation durability, dead (non-depletion, windows) layers
- 2. Scintillators : moderate E-resolution, but thick
- 3. IC : relatively thin, E-resolution?

2-4 PIN diodes It's good for a fragment-separator, but for HRS we need detectors with larger area

dE

TKE

Spectrometers

- 1. ToF detectors (spectrometer case) : start(where?) & stop
- 2. X, X', Y, Y' detectors in the Dispersive focal plane (Bρ-resolution, inverse reconstruction)
- 3. dE, ToF, TKE for full identification (A,Z,q,E)
- 4. Wide Z-range of products
- 5. Radiation resistance
- 6. PID confirmation (isomers) Gamma detectors vs. Large size PID detectors
- 7. Multi-particles registration

Separators

- 1. Signals Doubling (filtering)
- 2. Si-detectors: Depletion issue
- 3. Optical trajectory reconstruction (Isochronous term (L/ δ)

6. Irreplaceable helper for PID

LISE⁺⁺ LISE⁺⁺ *cute*

LISE⁺⁺ : Irreplaceable helper for PID

LISE ⁺⁺_{cute} : DONE!

Nuclear Instruments and Methods in Physics Research B 376 (2016) 168-170

Plans for performance and model improvements in the LISE⁺⁺ software M.P. Kuchera, O.B. Tarasov, D. Bazin, B.M. Sherrill, K.V. Tarasova

Fig. 1. A schematic diagram of the LISE⁺⁺ development plans.

The LISE⁺⁺ software suite is undergoing a major transportation to a new graphics framework in order to support modern compilers and computing methods.

Qt framework. For compatibility with future operating systems, the graphics framework is being transported to Qt. Benefits include provisions for 64-bit operation, cross-platform compatibility, and the ability to take advantage of computational advances. Qt was chosen as the graphics framework based on its cross-platform capabilities, large feature set, and widespread use in crossplatform C++ applications. Qt is a package of C++ graphics libraries that has great benefits for developing applications for nearly all operating systems and devices. The code remains essentially identical for all platforms, which allows for easy compilation of executable programs for any operating system or device. We will release Windows, Mac, and Linux versions of the software.

- 1. Next week : announce to experts about the new version to benchmark and update their configurations
- $LISE_{cute}^{++}$ version can be downloaded free from the LISE site 2. next week
- The official version will be released at the end of January 3.
- A lot of new features. Some old bugs were solved. 4. Hope, that new bugs number is small © and they will be fixed during the next month with your help.

🔟 🔏 lise.nscl.msu.edu/download/

Index of /download

Nam	<u>1e</u>	<u>Last modi</u>	fied	<u>Size</u>	Description
Parent Directo	ry			-	
B LISE++ 12 1	2.exe	2020-02-10	12:07	20M	
B LISE++ 13 4	5 beta.ex	<u>e</u> 2020-05-04	12:56	20M	
Linux/		2020-12-12	03:48	-	
MS open vers	sions/	2020-12-12	04:21	-	
macOS/	J	2020-12-11	13:55	-	
other/		2019-09-16	12:41	-	

Help		
Documentaton		
Production of Fast Rare Ion Beams (lectures)		
Check for new version		
Contact to us (e-mail)	►	General questions, Reaction mechanism
Register now		Operations in MS Windows
Our web-sites	►	Operations in Mac OS
Partner sites	•	Operations in Linux(UNIX)
Update My Documents\LISE with last installation		
View of spectrometer	►	
Periodic Table of Elements		
About		

Sci Se Porting schedule											
		37		38	39	40					
		49		50	51	52					
		11-Dec		18-Dec	25-Dec	1-Jan					
SetupPanel	Layout, Timer	0.1	done								
IREF	StatusBar		done								
Piots	Graphics	0.1	done	¥							
	Connection		done	e	ş						
	Benchmarks		done	3	Der						
Dynamical menu		done	done	8	ex	0					
Monte Carlo calculations	Graphics	done	done	ч <mark>г</mark>	to	as					
5.3.2	Benchamrk	0.1	done	ž	de	<u>e</u>					
Read/Write	Files	done	done	ş	S						
Dptions Results configuraton Append		done	done	>	he	<u>č</u>					
Restore/Document LISE structure	initialization/closing	0.1		0.1	1 pr	off					
	rerdaw, cleaning	0.1	done		ser						
fune separator	middle brho	done	done		ţ	021					
d_CN table of isotopes	benchamrks	done	done		53	5					
Table of Nuclides	sizes	done	done		- 	e					
Application size (adaptation to HDPI)		0.1		0.1		Š					
correction and updates list		0.1	done		qu	÷,					
remake WinHelp links		0.1	done		Ger						
HighOrderOptics & ReactionInMaterial		done	done)e(
ATIMA 1.4		done	done		_						
LIBRARIES, Codes (Charge)		0.1		0							
New version - html access		done	done	é							
dialog About		0.1	done	1							
Creaton of multiplatform versions				X	0.3						
nstallation of multiplatform versions			e	ž							
benchmarks & corrections			é	0.2	0.7	1					
benchmarks & corrections		1	2	1	1	1					
thar * >Qstring			ic	_							
Profile			÷								
OT@MSU 12/11/2020		2		1.5	2	210					

Thank you for your attention!

Be healthy!

Do not forget to download $LISE_{cute}^{++}$