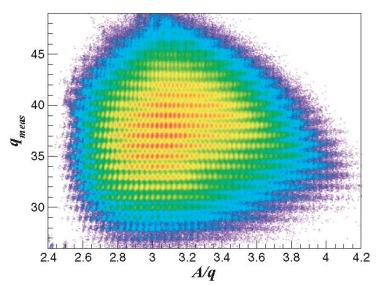


Resent study of fission in inverse kinematics

Oleg B. Tarasov (NSCL/MSU)

- · Introduction
- · GANIL: Fusion-Fission
- · MSU: Abrasion-Fission
- · MSU: Abrasion-Ablation
- · Couple words for ...
- · Summary

Heavy neutron-rich isotope beam production


- □ Nowadays, fission is widely used to produce rare neutron-rich nuclei. :
 - * in-flight fission (abrasion-fission, Coulomb fission)
 - * spallation reactions (ISOL technique) at thick Uranium targets
- □ Important issue of these both techniques is the inability to produce neutron-rich fragments with Z>55 due to small production abrasion-fission cross sections.

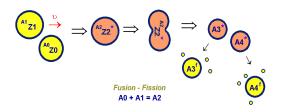
Using fusion-fission reactions, the fissile nucleus becomes heavy than projectile (Uranium)

Inverse kinematics of low energy reactions?

- □ VAMOS experiments to measure fission fragment yields from the reaction of ²³⁸U with ¹²C near the Coulomb barrier demonstrated the advantages of inverse kinematics to study production mechanisms [1], and to investigate fission fragments properties [2].
- □ However, in order to explore properties of very neutron rich isotopes produced in this way it is necessary to separate isotopes of interest from undesirable products.
- 1. M.Caamaño, et al., Phys. Rev. C 88, 024605 (2013)
- 2. A.Shrivastava et al., Phys. Rev. C 80, 051305(R) (2009)

How to produce heavy fusion-fission beams with separators?

09/09/16 - OT @ EXON.Kazan.ru


Fusion-Fission is a new reaction mechanism for rare beam production

A model [1] for fast calculations of fusion–fission fragment cross sections has been developed in LISE⁺⁺ [2] based on already existent analytical solutions: fusion–evaporation and fission fragment production models.

Main features of the model:

- Production cross-section of fragments
- Kinematics of reaction products
- Spectrometer tuning to the fragment of interest optimized on maximal yield (or on good purification)

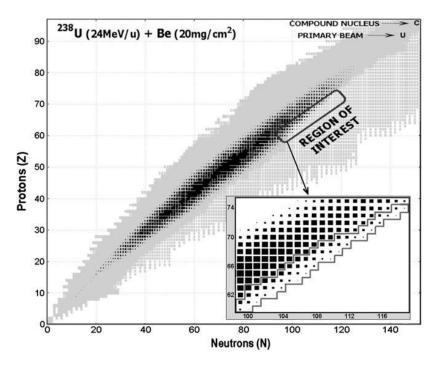
Advantages of in-flight fusion-fission to explore neutron-rich 55 < Z < 75 region are comparing to AF & CF:

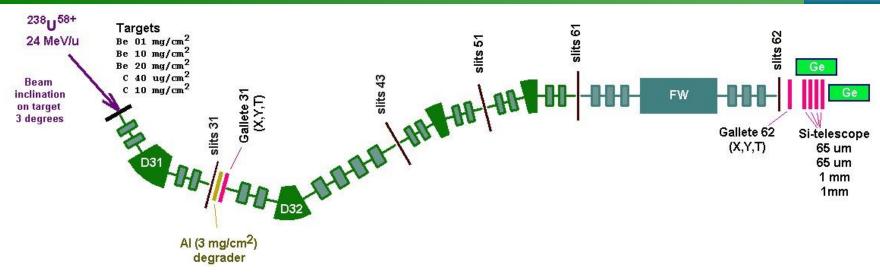
- the heavier fissile nucleus competing with abrasion-fission (Z < 92),
- the higher excitation energy of a fissile nucleus competing with Coulomb fission of the ²³⁸U primary beam.

Open Questions:

- What is optimal conditions, for example the energy of primary beam, the target material, thickness and so on?
- How reliable are simulations? Intensities, purification?
- What are contributions from other reaction mechanisms?
- Separation, Identification, Resolution?

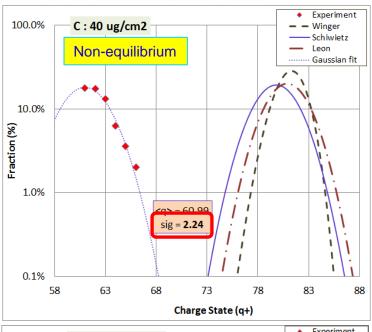
- [1] O. B. T. and A. C. C. Villari, NIM B 266 (2008) 4670-4673
- [2] O. B. T. and D. Bazin, NIM B 266, 4657 (2008).

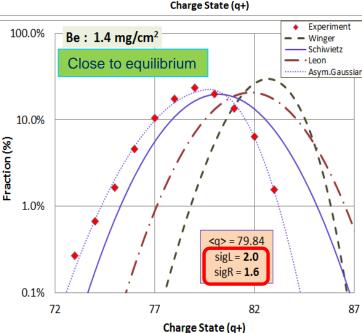


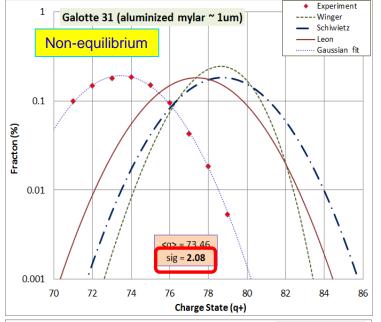

Fig. Two-dimensional yield plot for fragments produced in the 238 U (20 MeV/u,1pnA) + D (12 mg/cm²) reaction and separated by SISSI + Alpha

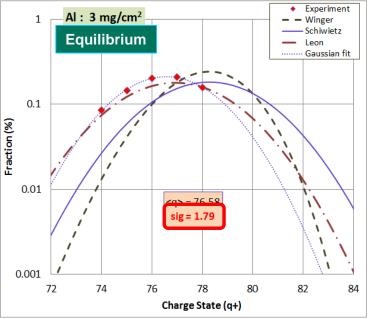
A experiment to show separation and identification of fusion-fission products has been performed using the LISE3 fragment-separator at GANIL.

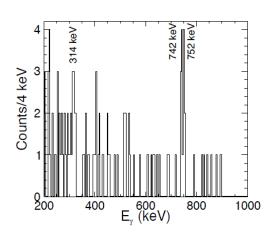
Experimental set-up


- A ²³⁸U beam at 24 MeV/u with a typical intensity of 10⁹ pps, was used to irradiate a series of beryllium targets and a carbon target.
- The beam was incident at an angle of 3° in order not to overwhelm the detectors with the beam charge states.
- Fragments were detected in a Silicon telescope at the end of the separator. Fission fragments produced by inverse kinematics are identified by ΔE-TKE-Bp-ToF method.
- Two MCP detectors (gallete 31 and gallete 62) were used to measure positions and times.
- Germanium γ-ray detectors were placed near the Si telescope to provide an independent verification of the isotope identification via isomer tagging.


 238 U @ 24 A MeV + 9 Be -> 247 Cm E*= 150-200 MeV 238 U @ 24 A MeV + 12 C -> 250 Cf E*= 180-250 MeV

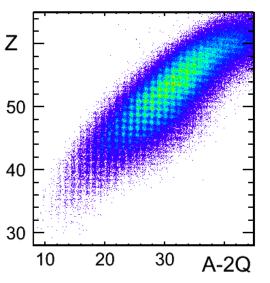


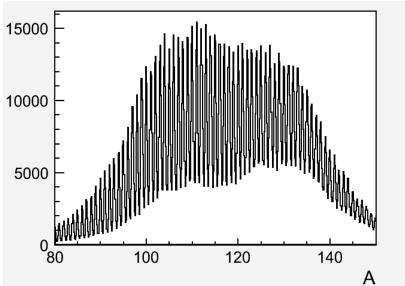

²³⁸U⁵⁸⁺ → q+ (24 MeV/u) charge state distribution after ...

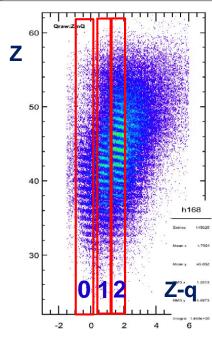

- what charge state model should be used for fragment transmission estimation?
- Based on sigma
 values and peak
 positions it is
 possible to conclude
 about reaching
 equilibrium thickness
- The best predictions are given for beam and fragments by A.Leon et al., AD & ND Tables 69 (1998) 217

This work was done also at GANIL

Particle Identification

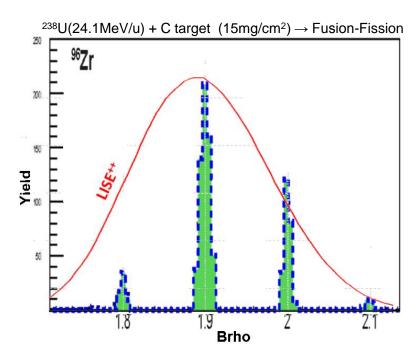


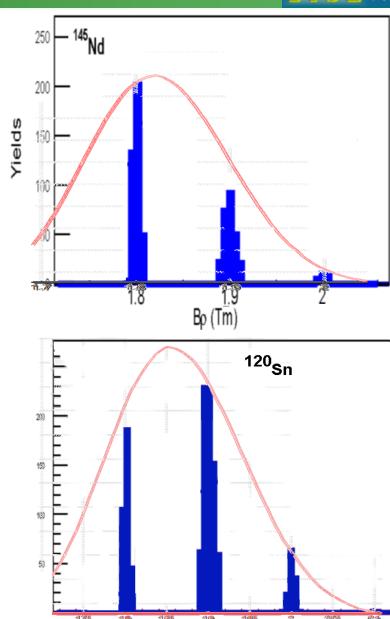



Gamma-ray spectrum observed in coincidence with $^{128}Te.$ The characteristic gamma lines of 314, 742 and 752 keV sign the decay of the isomeric state of $\,T_{\frac{1}{2}}=370~\rm ns$

- Preliminary detectors calibration with the primary beam,
- Then particle identification has to be proved by gamma from know isomers

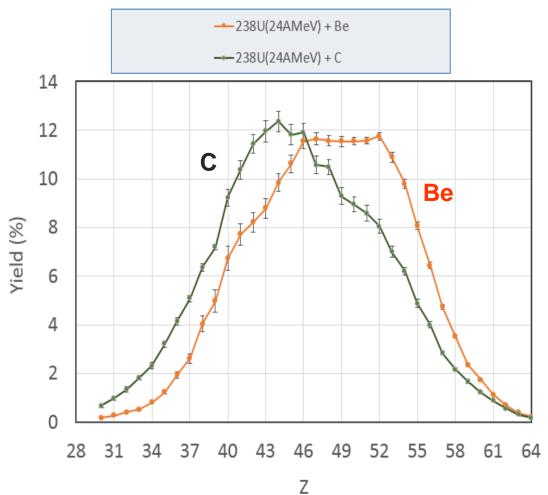
The atomic number is determined from the combination of energy loss (ΔE) and time-of-flight (TOF) values according to the Bethe formula:	$Z \approx \sqrt{\Delta E / \left(\frac{1}{\beta^2} \ln \left(\frac{5930}{1/\beta^2 - 1}\right) - 1\right)}$
The fragment mass can be extracted in atomic units from the relativistic formula, where TKE is calculated as a sum of the energy loss values in each of the detectors in a multilayer telescope stopping the products	$A = \frac{TKE}{931.5 \times (\gamma - 1)}$
The charge state of the ion evaluated from a relation based on the TKE, velocity and magnetic rigidity values:	$q = 3.33 \times 10^{-3} \frac{TKE \times \beta \gamma}{B \rho (\gamma - 1)}$





Transmission calculations

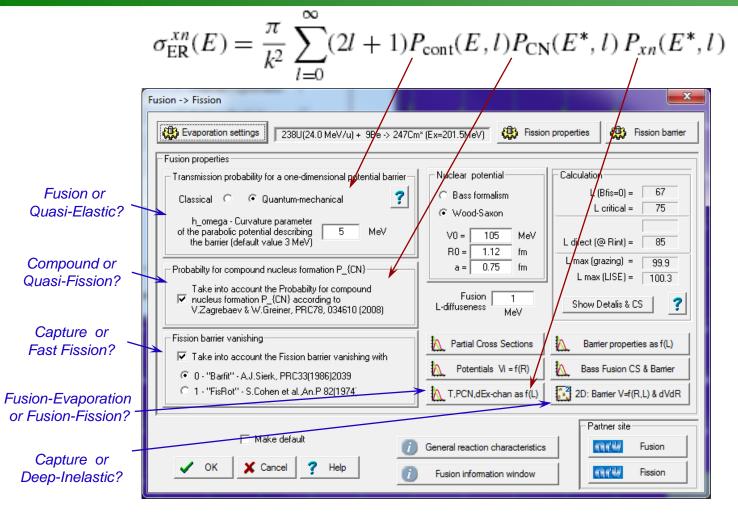
- The LISE⁺⁺ code has been used for transmission calculations
- A.Leon's charge state and F.Hubert 's energy loss models were used
- Data with 15 mg/cm² Be & C targets have been used in analysis
- In the analysis the targets have been divided on 5 slices, results have been summed.
 It has been done because the LISE++ assumed reaction place in the middle of target
- A lot of important updates, improvements, bugs fix were done during this analysis



Brho

Elemental distributions of fission fragments

²³⁸ U Energy	24 AMeV Be	24 AMeV C	
<z></z>	48.01	45.75	
d <z></z>	0.22	0.21	
sig(Z)	6.03	6.40	
d(sig(Z))	0.17	0.16	

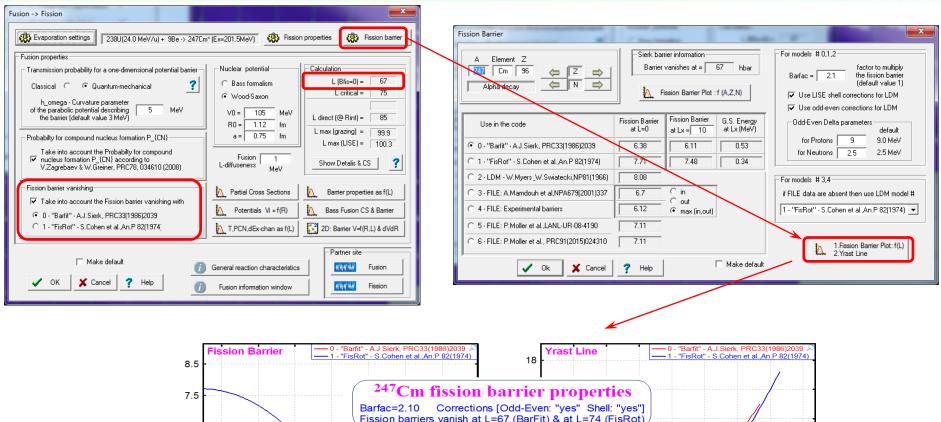

Two light targets (A=9 & 12) at the same beam energy, but why so different distributions?

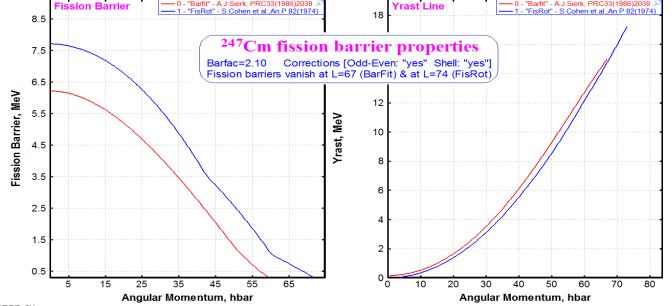
We need a fast analysis of partial cross sections!!

Update of Fusion mechanism in LISE⁺⁺

A recent update of low-energy reaction mechanism was performed to <u>simulate the dependence of different reaction channels from angular momentum</u> and qualitatively estimate production cross sections in the case of Fusion-Fission and Fusion- Residue.

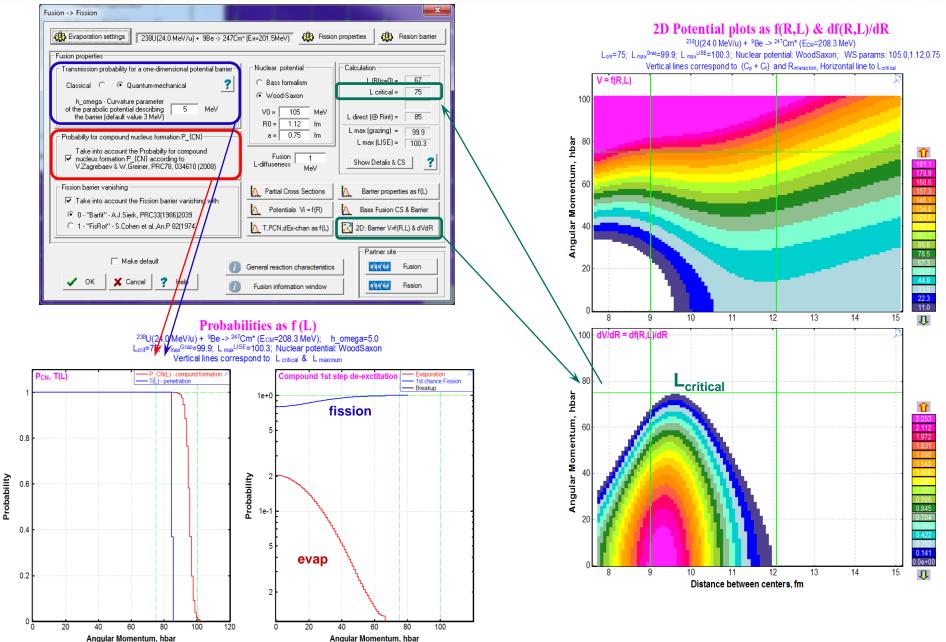
Projectile Fragmentation and Abrasion-Fission are dominated reaction mechanisms in LISE⁺⁺ for rare beam production, where we are developing our own models


Do not hesitate to use Low-Energy reaction computing centers as NRV for more sophisticated solutions with Channel Coupling, Langevin equations and so on

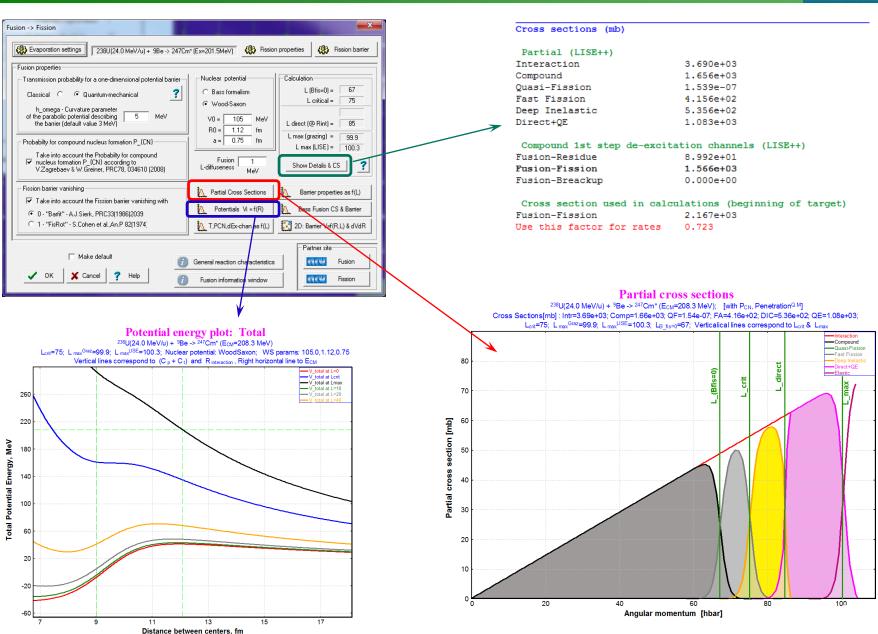


Fission Barrier Vanishing as f(L)

10



Transmission for a barrier & CN formation probabilities as f(L)



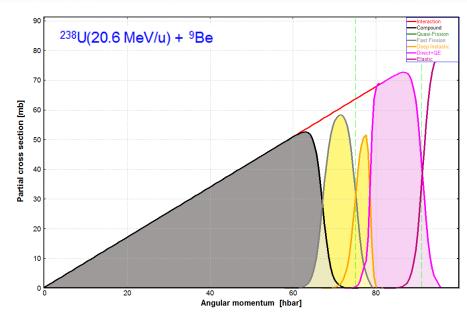
Potential energy and Partial cross sections



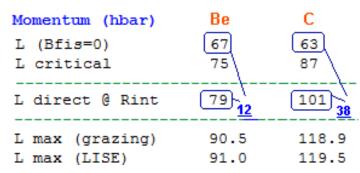
Output channels in the e547 experiment: ²³⁸U (24 MeV/u)

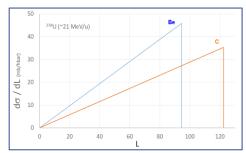
Partial cross sections

 $\begin{array}{c} ^{238}\text{U}(24.0 \text{ MeV/u}) + ^{9}\text{Be} \rightarrow ^{247}\text{Cm}^* \left(\text{E}_{\text{CM}} = 208.3 \text{ MeV} \right); \quad \text{[with P_{CN}, $PenetrationQ,M]} \\ \text{Cross Sections[mb]} : \text{Intr=} 3.69\text{e} + 03; \text{Comp} = 1.66\text{e} + 03; \text{QF} = 1.54\text{e} - 07; \text{FA} = 4.16\text{e} + 02; \text{DIC} = 5.36\text{e} + 02; \text{QE} = 1.08\text{e} + 03; \\ \text{$L_{\text{crit}} = 75; L_{max}^{Graz} = 99.9; L_{max}^{LISE} = 100.3; $L_{\text{B}_{\text{fis}} = 0} = 67;$ $Verticalical lines correspond to $L_{\text{crit}} \& L_{\text{max}}$ \\ \end{array}$

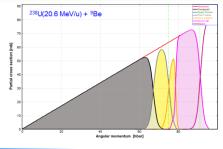

Compound fission ~100% Fissile Z = 96 High Excitation Energy

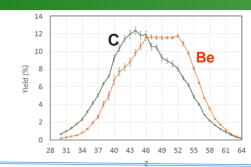
Sequential fission after DIC Fissile Z < 92 High Excitation Energy Partially go to fission Fissile Z~92 Low Excitation Energy

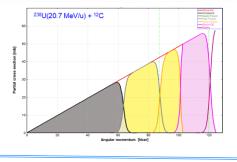

e547 experiment : Be vs. C targets

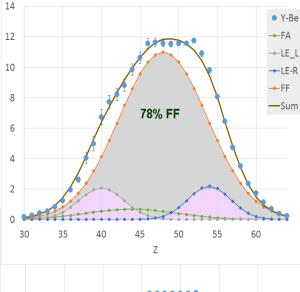


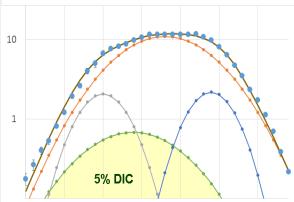
average for 17-24 MeV/u range			
		Targets	
Fission Barrier Vanishing	Reactions	Ве	С
	DIC+FA	19%	42%
Sierk	Fusion-Fission	56%	29%
	QE	25%	29%
	DIC+FA	8%	29%
Cohen	Fusion-Fission	66%	41%
	QE	25%	29%



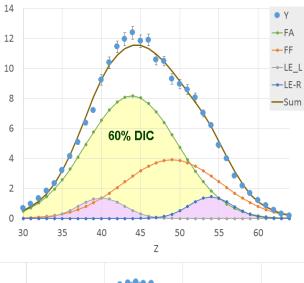

Carbon target.. 50% split... Why?
This is due to difference of moments of inertia between
C+U and Be+U just above where fission barrier go to zero


e547 experiment: results interpretation





average for 1	7-24 MeV/u range		
		Tar	gets
Fission Barrier Vanishing	Reactions	Ве	С
	DIC+FA	19%	42%
Sierk	Fusion-Fission	56%	29%
	QE	25%	29%
	DIC+FA	8%	29%
Cohen	Fusion-Fission	66%	41%
	QE	25%	29%
QE-cha	annel partially go	es to Low-excita	ation fission


Be-target



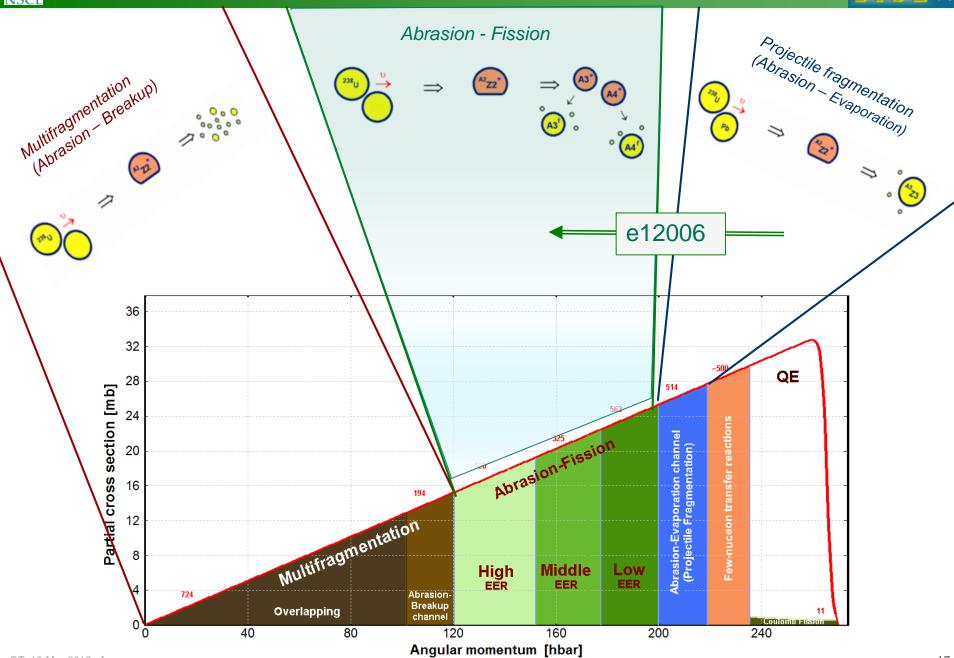
- Three main channels with earlier discussed parameters were used in fitting
- Reaction positions and widths were used the same in both case during fitting process except FF positions (48 and 49)
- From fitting results it follows, that Fusionfission dominates in the case of Be-target, and sequential fission in the case of Ctarget
- New LISE⁺⁺ partial cross section analysis fairly describes experimental results
- Significant distinction in elemental distributions of fragments produced with two different light target is explained by larger DIC component with C-target due to fission barrier vanishing
- Fusion-Fission mechanism is responsible in both cases for High-Z isotope production (Z>60)

C-target

Still under analysis ... and again transmission....

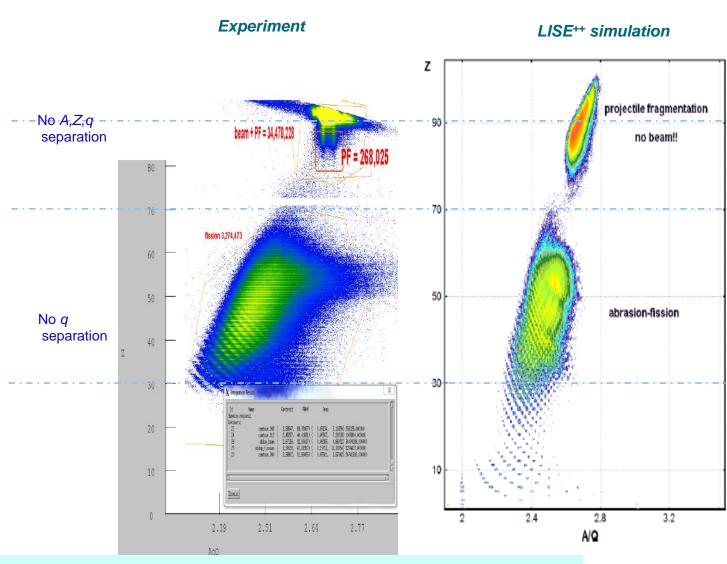
Main reaction channels for ²³⁸U (20 MeV/u) on Be & C targets as function of angular momentum

	L (B _{fis} =0)	L critical	L direct	L max	
L-definition	Fission barrier vanishes	Potential energy pocket	Corresponds to the interaction radius	Corresponds to the distance of minimum	
		vanishes	(max. s-wave barrier position)	approach at grazing angle	
Do townst		75	70	00.2	
Be-target	67	75	78	89.2	
C-target	63	87	99	117.1	
Reaction from	Complete	Fast Fission with HE	Deep-Inelastic Collisions with	Some part of Direct reactions go to	
previous L up to	Fusion-Fission	sequential fission	HE sequential fission	sequential LE fission	
current L	rusion-rission	sequential lission	ne sequential lission	sequential LE lission	
Z of Fissile nucleus	Z of compound	D-I-			
	for targets		w projectile	Around Z-projectile (92)	
	Re: 96: C: 98	8:	5 < Z < 92	, , , , , , , , , , , , , , , , , , , ,	
Fissile nucleus	0	B-1	- d d t t d t - t	Classic Basic stile and acity	
velocity	Compound velocity	Between compour	nd and projectile velocities	Close to Projectile velocity	
Excitation Energy of	C: 204.3 MeV	Very broad energy rang	Very broad energy range (30 MeV– Compound nucleus excitation energy)		
Fissile nucleus	Be: 166.6 MeV	excita			
Z-distribution of	1 peak : Broad			Two narrow peaks with Z around	
fission fragments	for Be: <z>=48</z>	broad distribution	on with peak @ Z~42-45	1	
	C: <z>=49</z>			38-40 and 52-54	
Reaction channel				DF (sequential fission after direct	
designation	FF (fusion-fission)	IF (incomplete fusion-fis	sion, inelastic sequential fission)	reactions)	
FOR INTERNAL INFORMATION	•			*	
Yield Experimental (pre	liminary)				
Be-target	79.6%	15.4%		10%	
C-target	30%		60%	10%	
	•	-		-	
Fission cross sections [m	nb] calculated by LISE++				
Be-target	1990	494	153	874	
C-target	1020	913	542	1013	
	•				


Quasi-Fission -> 0 for these light targets

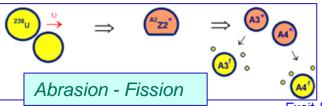
- Next transmission analysis should be done, even reaction channel contributions are expected to be close the same
- Previous analysis: yields -> cross sections -> contribution factors
- Next analysis: yields & transmission -> factors -> cross sections


238U(80MeV/u) + C reaction scheme



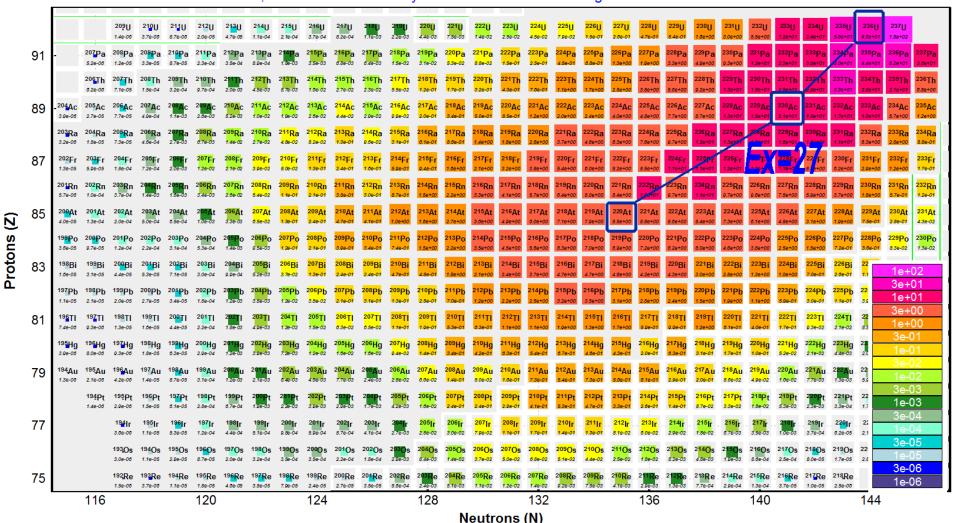
e12006: PID

Diamond target: ToF start


- 1. Initial purpose: Projectile fragmentation products
- . Finally working under in-flight fission mechanism

OT, 18-Mar-2016, East Lansing 18

Abrasion-Fission : Three Excitation-Energy regions model



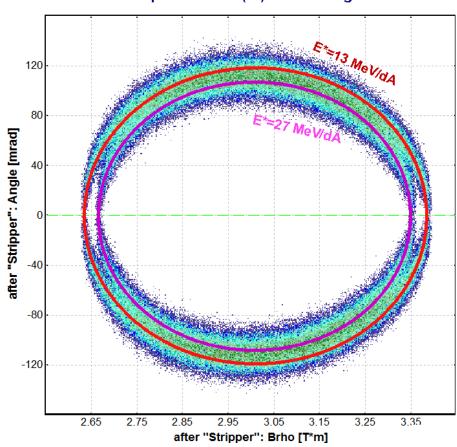
Fission channel cross section plot for $E^* = 27.0^* dA MeV$

Fission channel cross-sections

ABRASION-ABLATION - ²³⁸U + C

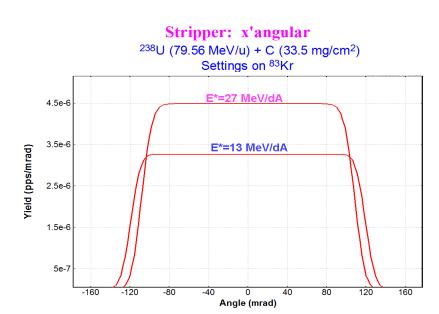
Excit.Energy Method: < 2 >; <E*>:27.0*dA MeV Sigma: 19.00; No Intrinsic Thermalization NP=32; SE: "DB0+Cal1" Density: "auto" GeomCor: "Off" Tunlg: "auto" FisBar=#1 BarFac=1.00 Modes=1010 1000 110

Fission kinematics and Abrasion excitation energy

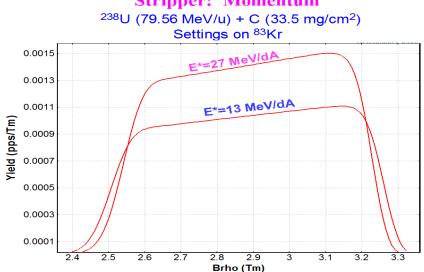


LISE++ Abrasion-Fission model

Monte Carlo method


238U (79.56 MeV/u) + C Transmitted Fragment 83Kr (AFmid)

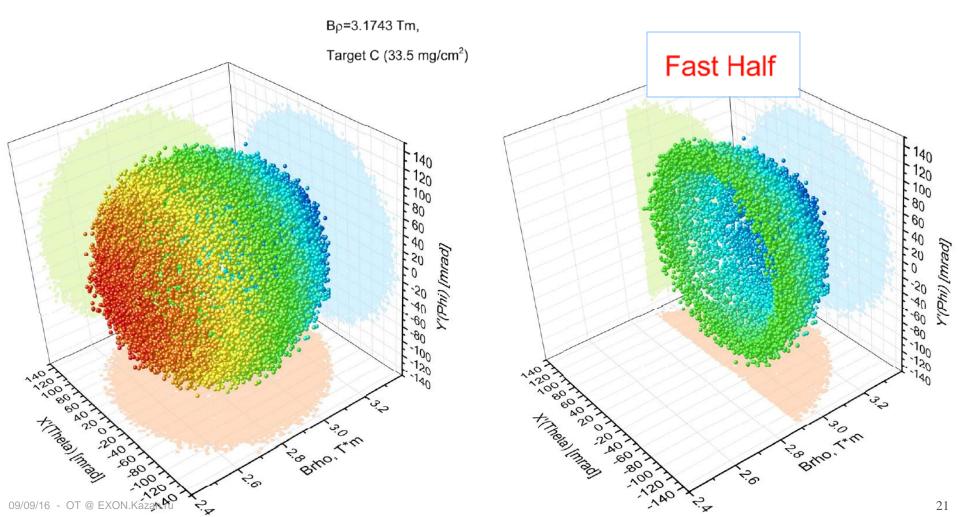
special case: d(E*)=0 & thin target



 $E^* = 27 * dA$ (27 MeV per abraded nucleon)

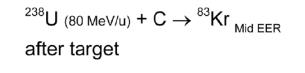
Distribution method

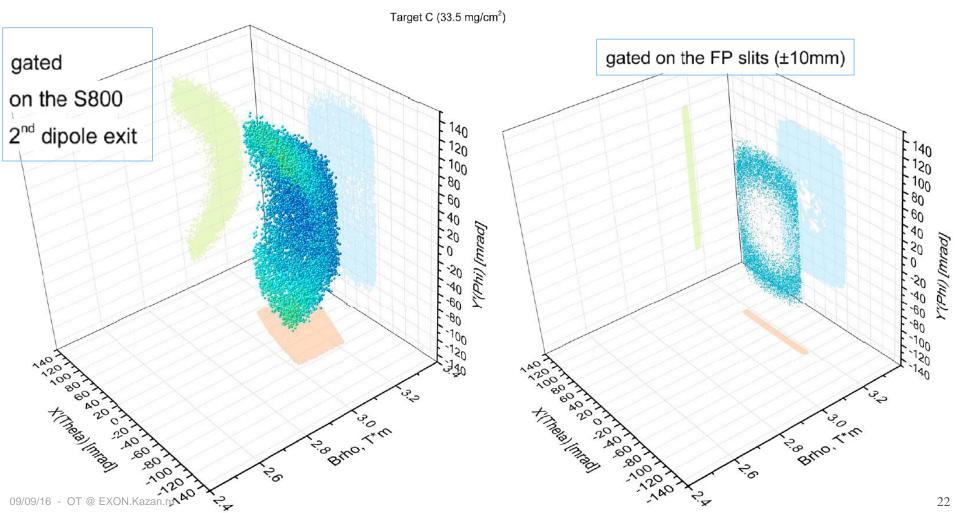
Stripper: Momentum



3D fission kinematics

 238 U $_{(80\,\text{MeV/u})}$ + C \rightarrow 83 Kr $_{\text{Mid EER}}$ after target


LISE**

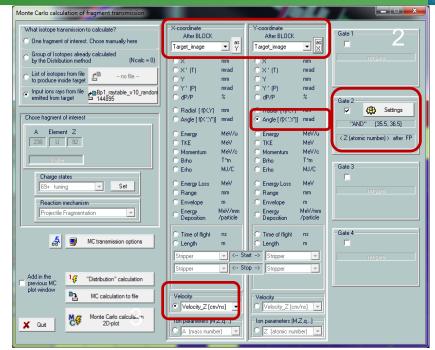

3D fission kinematics

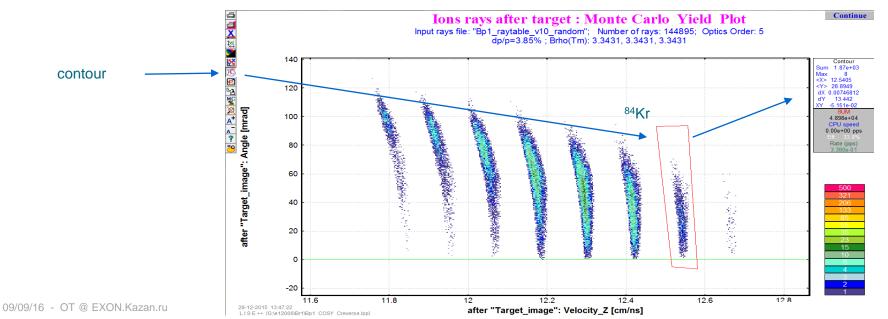
LISE⁺⁺

Bρ=3.1743 Tm,

Reverse technique and its application

- The Reverse technique sending experimental data back through a spectrometer to get a momentum vector at the target (Trajectory reconstruction)
- Momentum vector after reaction in target (for example standard S800 technique)
 - Reaction mechanism study
 - ➤ Beam spot
 - > Angular acceptance vs emittance
- Beam emittance measurement (X,A,Y,B,E)
 - > Study of correlations between beam emittance components
- Determination of location of new ions production
 - ➤ BigRIPS case : production in the beam-dump
- Benchmarks based on LISE⁺⁺ MC apparatus and spectrograph segmentation
 - > Beam dynamics visualization
 - > Beam optics calculation verification
 - > Experimental analysis and calibrations test
- Experiment set-up feedback with LISE++
 - > Obtaining experimental information by detecting devices in some (or one) locations
 - > Retracing up-stream (or down-stream) from detection locations based
 - ➤ Analysis, minimization

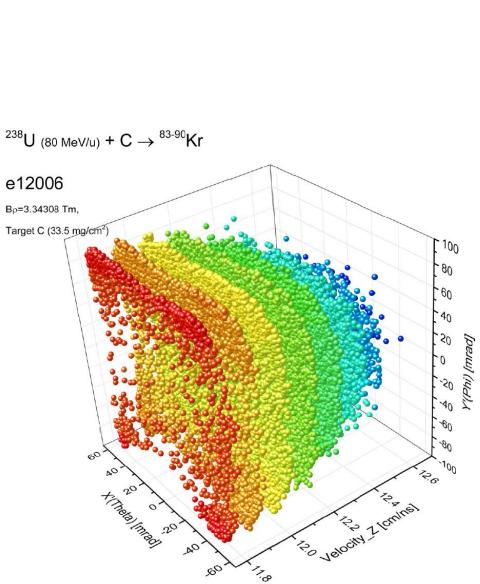

Velocity-Z vs Theta plot

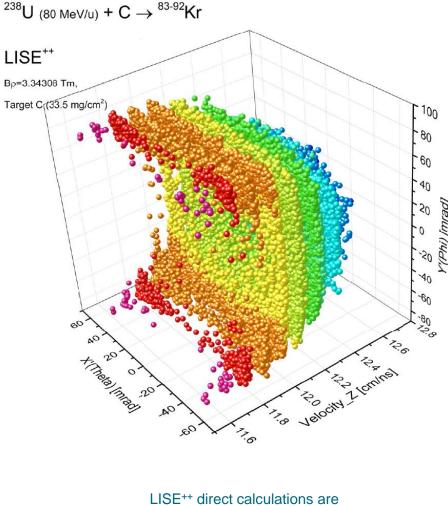

MICHIGAN STATE
UNIVERSITY
LISE ++

Gate for

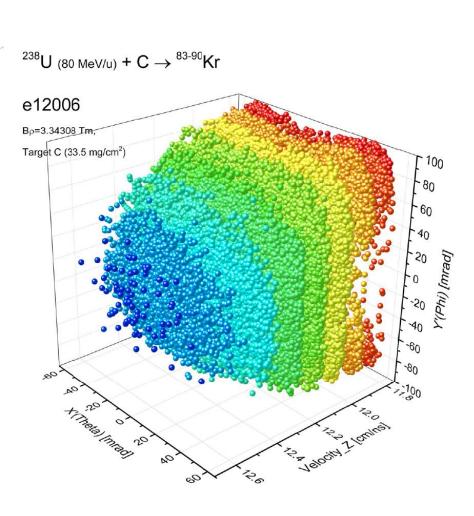
Kr isotopes

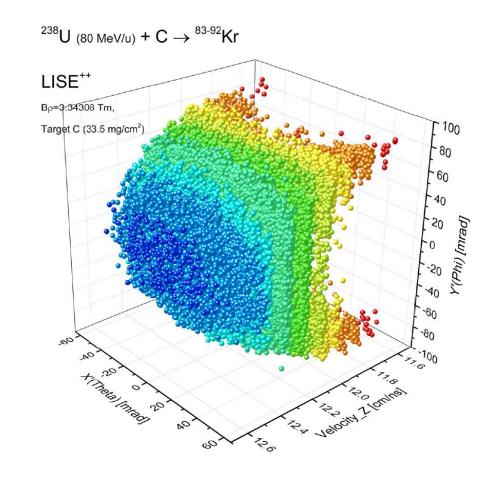
- The reverse separator technique developed in the LISE⁺⁺ package^{*} and coupled with the S800 configuration has been used to study fission mechanism properties.
- Using LISE⁺⁺ technique allows fragment vectors measured at the final plane of a spectrometer to be replayed through in the backward direction of the spectrometer to reconstruct their trajectories in order to deduce the reaction place and momentum vector.





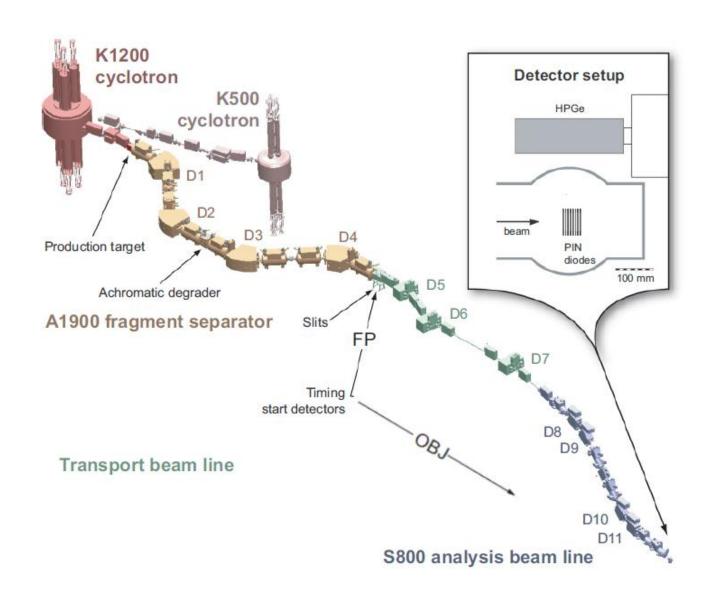
Velocity-Z vs X,Y-Angles 3D-plots @ S800 Target position


LISE** direct calculations are gated on the Scintillator position

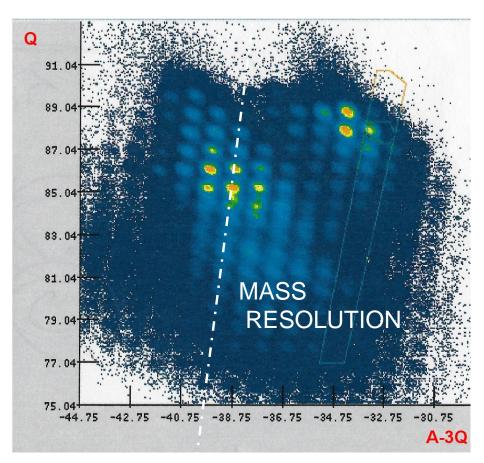

Pay attention that in LISE** calculations the isotope range is 83-92 instead experimental 83-90

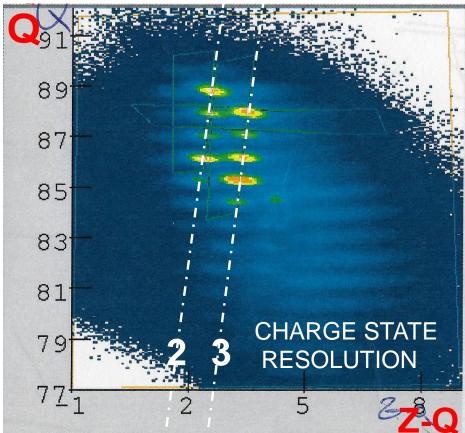
Velocity-Z vs X,Y-Angles 3D-plots @ S800 Target position

LISE** direct calculations are gated on the Scintillator position

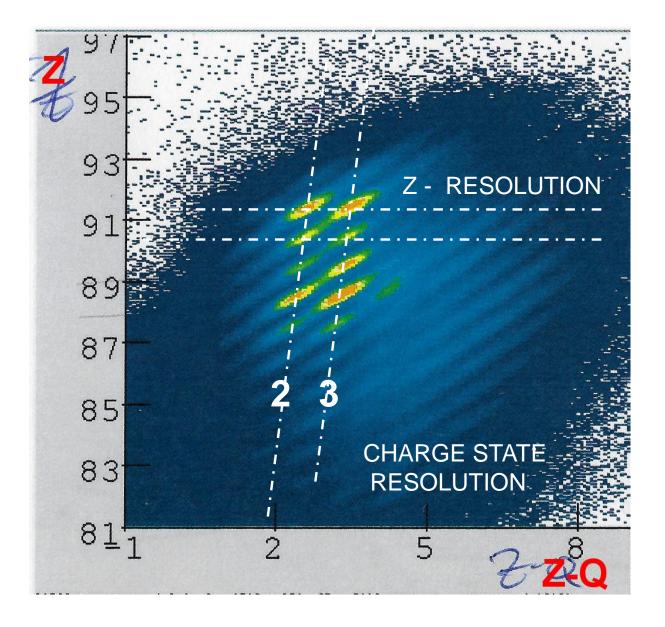

Pay attention that in LISE++ calculations the isotope range is 83-92 instead experimental 83-90

e09063: Projectile fragmentation of ²³⁸U


End of June, 2016 E.Kwan – current spokesperson



e09063: Projectile fragmentation of ²³⁸U



Small Momentum acceptance Non-cooled PIN-diodes (50x50 mm² 0.5mm)

e09063: Projectile fragmentation of ²³⁸U

Several words for.... LISE⁺⁺ Development (since last 2014 EXON)

LISE++: EXOTIC BEAM PRODUCTION WITH FRAGMENT SEPARATORS AND	
THEIR DESIGN	30
O.B.Tarasov, D.Bazin	
FUTURE PERFORMANCE AND MODEL IMPROVEMENTS IN THE LISE++	
SOFTWARE SUITE	31
O.B.Tarasov, D.Bazin, M.P.Kuchera, B.M.Sherrill, K.V.Tarasova	

	v.9.9
	□ Optics: S & E construction methods
	■ Extended configurations in LISE**
	☐ Compensating dipole
	Multipole : Quadrupole & Sextupole superposition
	☐ TRANSPORT code file import to LISE**
	☐ Range Optimizer (Gas cell utility) update
ſ	
	■ Extended Configurations
	☐ Regular support routine:
	 user requests, calculation optimization, fix of bugs, interface improvement. Databases and other

updates

v.9.10.345				
☐ Update of Fusion reaction mechanism				
☐ Optics minimization (up to 2 nd order)				
☐ Reverse configurations: ray trajectory reconstruction				
□ Radiation Residue Calculator				
□ ETACHA4 (GUI) (still under construction)				
☐ Others notable				
 Decay Branching Database 				
 Ionization energy database & Ion mass calculator 				
 Utility "Angular Straggling & Rutherford scattering probabilities in compound" 				
 Rutherford scattering of primary beam in target in MC mode 				
 FRIB mass tables in the LISE⁺⁺ package 				
 Second order optics calculations of electric dipole 				

Next official version 10 will be released soon: October 2016

DT@FSEM.msu.edu 08/31/16

Conclusion

- Fusion-Fission reaction products produced by a ²³⁸U beam at 24 MeV/u on Be and C targets were measured in inverse kinematics by use of the LISE3 fragment separator, and fission and fragmentation products at 80 MeV/u by use the S800 spectrograph and A1900+S800BL separation system.
- The identification of fragments was done using the d*E-TKE-Brho-ToF* method. Germanium gamma-detectors were placed in the focal plane near the Si stopping telescope to provide an independent verification of the isotope identification via isomer tagging.
- The experiments demonstrated excellent resolution, in Z, A, and q (fusion-fission Z<60), projectile fragmentation (Z~92).
- The results demonstrate that a fragment separator can be used to produce radioactive beams using fusion-fission reactions in inverse kinematics, and further that in-flight fusion-fission can become a useful production method to identify new neutron-rich isotopes, investigate their properties and study production mechanisms. Mass, atomic number and charge-state distributions are reported for the two reactions.
- The comparison of the experimental atomic-number and mass distributions combined with the analysis of the isotopic-distributions properties show that between the ⁹Be and the ¹²C target, the reaction mechanism changes substantially, evolving from a complete fusion-fission reaction to incomplete fusion or fast fission.
- It has been demonstrated, that <u>the reverse tracking technique</u> can be used as a precise tool to get information for reaction mechanism characteristics.

Collaborators

O.B.T.,¹ O.Delaune,² F.Farget,² M.Bowry,¹ J.Berryman,¹ A.M.Amthor,³ V.Bader,¹ B.Bastin,² D.Bazin,¹ B.Blank,⁴ L.Caceres,² A.Chbihi,² T.Chupp,⁵ H.L.Crawford,⁶ B.Fernandez-Dominguez,⁷ A.Gade,^{1,8} S.Grevy,⁴ O.Kamalou,² S.M.Lukyanov,⁹ E.Lunderberg,¹ W.Mittig,^{1,8} D.J.Morrissey,^{1,10} J.Pereira,¹ L.Perrot,¹¹ A.Ratkiewicz,¹² F.Recchia,¹ M.-G.Saint-Laurent,² H.Savajols,² B.M.Sherrill,^{1,8} D.Smalley,¹ C.Stodel,² A.Stolz,¹ S.R.Stroberg,¹ J.C.Thomas,² A.C.Villari1,¹ D.Weisshaar,¹ S.Williams,¹ K.Wimmer,¹ J.Yurkon¹

09/09/16 - OT @ EXON.Kazan.ru

¹ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321, USA

² Grand Accelerateur National d'Ions Lourds, CEA/DSM-CNRS/IN2P3, F-14076 Caen, France

³ Department of Physics, Bucknell University, Lewisburg, PA 17837, USA

⁴ CENBG, UMR 5797 CNRS/IN2P3, Universit_e Bordeaux 2, F-33175 Gradignan, France

⁵ Department of Physics, University of Michigan, Ann Arbor, Michigan 48104, USA

⁶ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

⁷ Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain

⁸ Dep. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

⁹ FLNR, JINR, 141980 Dubna, Moscow region, Russian Federation

¹⁰ Dep. of Chemistry, Michigan State University, East Lansing, MI 48824, USA

¹¹ IPN Orsay, CNRS/IN2P3, F-91406 Orsay, France

¹² Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA