Resent study of fission in inverse kinematics Oleg B. Tarasov (NSCL/MSU) - · Introduction - · GANIL: Fusion-Fission - · MSU: Abrasion-Fission - · MSU: Abrasion-Ablation - · Couple words for ... - · Summary ### Heavy neutron-rich isotope beam production - □ Nowadays, fission is widely used to produce rare neutron-rich nuclei. : - * in-flight fission (abrasion-fission, Coulomb fission) - * spallation reactions (ISOL technique) at thick Uranium targets - □ Important issue of these both techniques is the inability to produce neutron-rich fragments with Z>55 due to small production abrasion-fission cross sections. Using fusion-fission reactions, the fissile nucleus becomes heavy than projectile (Uranium) Inverse kinematics of low energy reactions? - □ VAMOS experiments to measure fission fragment yields from the reaction of ²³⁸U with ¹²C near the Coulomb barrier demonstrated the advantages of inverse kinematics to study production mechanisms [1], and to investigate fission fragments properties [2]. - □ However, in order to explore properties of very neutron rich isotopes produced in this way it is necessary to separate isotopes of interest from undesirable products. - 1. M.Caamaño, et al., Phys. Rev. C 88, 024605 (2013) - 2. A.Shrivastava et al., Phys. Rev. C 80, 051305(R) (2009) How to produce heavy fusion-fission beams with separators? 09/09/16 - OT @ EXON.Kazan.ru ### Fusion-Fission is a new reaction mechanism for rare beam production A model [1] for fast calculations of fusion–fission fragment cross sections has been developed in LISE⁺⁺ [2] based on already existent analytical solutions: fusion–evaporation and fission fragment production models. #### Main features of the model: - Production cross-section of fragments - Kinematics of reaction products - Spectrometer tuning to the fragment of interest optimized on maximal yield (or on good purification) Advantages of in-flight fusion-fission to explore neutron-rich 55 < Z < 75 region are comparing to AF & CF: - the heavier fissile nucleus competing with abrasion-fission (Z < 92), - the higher excitation energy of a fissile nucleus competing with Coulomb fission of the ²³⁸U primary beam. #### Open Questions: - What is optimal conditions, for example the energy of primary beam, the target material, thickness and so on? - How reliable are simulations? Intensities, purification? - What are contributions from other reaction mechanisms? - Separation, Identification, Resolution? - [1] O. B. T. and A. C. C. Villari, NIM B 266 (2008) 4670-4673 - [2] O. B. T. and D. Bazin, NIM B 266, 4657 (2008). Fig. Two-dimensional yield plot for fragments produced in the 238 U (20 MeV/u,1pnA) + D (12 mg/cm²) reaction and separated by SISSI + Alpha A experiment to show separation and identification of fusion-fission products has been performed using the LISE3 fragment-separator at GANIL. ## **Experimental set-up** - A ²³⁸U beam at 24 MeV/u with a typical intensity of 10⁹ pps, was used to irradiate a series of beryllium targets and a carbon target. - The beam was incident at an angle of 3° in order not to overwhelm the detectors with the beam charge states. - Fragments were detected in a Silicon telescope at the end of the separator. Fission fragments produced by inverse kinematics are identified by ΔE-TKE-Bp-ToF method. - Two MCP detectors (gallete 31 and gallete 62) were used to measure positions and times. - Germanium γ-ray detectors were placed near the Si telescope to provide an independent verification of the isotope identification via isomer tagging. 238 U @ 24 A MeV + 9 Be -> 247 Cm E*= 150-200 MeV 238 U @ 24 A MeV + 12 C -> 250 Cf E*= 180-250 MeV ### ²³⁸U⁵⁸⁺ → q+ (24 MeV/u) charge state distribution after ... - what charge state model should be used for fragment transmission estimation? - Based on sigma values and peak positions it is possible to conclude about reaching equilibrium thickness - The best predictions are given for beam and fragments by A.Leon et al., AD & ND Tables 69 (1998) 217 This work was done also at GANIL ### **Particle Identification** Gamma-ray spectrum observed in coincidence with $^{128}Te.$ The characteristic gamma lines of 314, 742 and 752 keV sign the decay of the isomeric state of $\,T_{\frac{1}{2}}=370~\rm ns$ - Preliminary detectors calibration with the primary beam, - Then particle identification has to be proved by gamma from know isomers | The atomic number is determined from the combination of energy loss (ΔE) and time-of-flight (TOF) values according to the Bethe formula: | $Z \approx \sqrt{\Delta E / \left(\frac{1}{\beta^2} \ln \left(\frac{5930}{1/\beta^2 - 1}\right) - 1\right)}$ | |---|--| | The fragment mass can be extracted in atomic units from the relativistic formula, where TKE is calculated as a sum of the energy loss values in each of the detectors in a multilayer telescope stopping the products | $A = \frac{TKE}{931.5 \times (\gamma - 1)}$ | | The charge state of the ion evaluated from a relation based on the TKE, velocity and magnetic rigidity values: | $q = 3.33 \times 10^{-3} \frac{TKE \times \beta \gamma}{B \rho (\gamma - 1)}$ | ### **Transmission calculations** - The LISE⁺⁺ code has been used for transmission calculations - A.Leon's charge state and F.Hubert 's energy loss models were used - Data with 15 mg/cm² Be & C targets have been used in analysis - In the analysis the targets have been divided on 5 slices, results have been summed. It has been done because the LISE++ assumed reaction place in the middle of target - A lot of important updates, improvements, bugs fix were done during this analysis **Brho** ### **Elemental distributions of fission fragments** | ²³⁸ U
Energy | 24
AMeV
Be | 24
AMeV
C | | |----------------------------|------------------|-----------------|--| | <z></z> | 48.01 | 45.75 | | | d <z></z> | 0.22 | 0.21 | | | sig(Z) | 6.03 | 6.40 | | | d(sig(Z)) | 0.17 | 0.16 | | Two light targets (A=9 & 12) at the same beam energy, but why so different distributions? We need a fast analysis of partial cross sections!! ### **Update of Fusion mechanism in LISE**⁺⁺ A recent update of low-energy reaction mechanism was performed to <u>simulate the dependence of different reaction channels from angular momentum</u> and qualitatively estimate production cross sections in the case of Fusion-Fission and Fusion- Residue. Projectile Fragmentation and Abrasion-Fission are dominated reaction mechanisms in LISE⁺⁺ for rare beam production, where we are developing our own models Do not hesitate to use Low-Energy reaction computing centers as NRV for more sophisticated solutions with Channel Coupling, Langevin equations and so on ## **Fission Barrier Vanishing as f(L)** 10 ### Transmission for a barrier & CN formation probabilities as f(L) ### **Potential energy and Partial cross sections** ### Output channels in the e547 experiment: ²³⁸U (24 MeV/u) #### Partial cross sections $\begin{array}{c} ^{238}\text{U}(24.0 \text{ MeV/u}) + ^{9}\text{Be} \rightarrow ^{247}\text{Cm}^* \left(\text{E}_{\text{CM}} = 208.3 \text{ MeV} \right); \quad \text{[with P_{CN}, $PenetrationQ,M]} \\ \text{Cross Sections[mb]} : \text{Intr=} 3.69\text{e} + 03; \text{Comp} = 1.66\text{e} + 03; \text{QF} = 1.54\text{e} - 07; \text{FA} = 4.16\text{e} + 02; \text{DIC} = 5.36\text{e} + 02; \text{QE} = 1.08\text{e} + 03; \\ \text{$L_{\text{crit}} = 75; L_{max}^{Graz} = 99.9; L_{max}^{LISE} = 100.3; $L_{\text{B}_{\text{fis}} = 0} = 67;$ $Verticalical lines correspond to $L_{\text{crit}} \& L_{\text{max}}$ \\ \end{array}$ Compound fission ~100% Fissile Z = 96 High Excitation Energy Sequential fission after DIC Fissile Z < 92 High Excitation Energy Partially go to fission Fissile Z~92 Low Excitation Energy ## e547 experiment : Be vs. C targets | average for 17-24 MeV/u range | | | | |---------------------------------|----------------|---------|-----| | | | Targets | | | Fission
Barrier
Vanishing | Reactions | Ве | С | | | DIC+FA | 19% | 42% | | Sierk | Fusion-Fission | 56% | 29% | | | QE | 25% | 29% | | | DIC+FA | 8% | 29% | | Cohen | Fusion-Fission | 66% | 41% | | | QE | 25% | 29% | Carbon target.. 50% split... Why? This is due to difference of moments of inertia between C+U and Be+U just above where fission barrier go to zero ## e547 experiment: results interpretation | average for 1 | 7-24 MeV/u range | | | |---------------------------------|--------------------|------------------|---------------| | | | Tar | gets | | Fission
Barrier
Vanishing | Reactions | Ве | С | | | DIC+FA | 19% | 42% | | Sierk | Fusion-Fission | 56% | 29% | | | QE | 25% | 29% | | | DIC+FA | 8% | 29% | | Cohen | Fusion-Fission | 66% | 41% | | | QE | 25% | 29% | | QE-cha | annel partially go | es to Low-excita | ation fission | #### Be-target - Three main channels with earlier discussed parameters were used in fitting - Reaction positions and widths were used the same in both case during fitting process except FF positions (48 and 49) - From fitting results it follows, that Fusionfission dominates in the case of Be-target, and sequential fission in the case of Ctarget - New LISE⁺⁺ partial cross section analysis fairly describes experimental results - Significant distinction in elemental distributions of fragments produced with two different light target is explained by larger DIC component with C-target due to fission barrier vanishing - Fusion-Fission mechanism is responsible in both cases for High-Z isotope production (Z>60) #### C-target # Still under analysis ... and again transmission.... #### Main reaction channels for ²³⁸U (20 MeV/u) on Be & C targets as function of angular momentum | | L (B _{fis} =0) | L critical | L direct | L max | | |---------------------------|--------------------------|---------------------------|--|---|--| | L-definition | Fission barrier vanishes | Potential energy pocket | Corresponds to the interaction radius | Corresponds to the distance of minimum | | | | | vanishes | (max. s-wave barrier position) | approach at grazing angle | | | Do townst | | 75 | 70 | 00.2 | | | Be-target | 67 | 75 | 78 | 89.2 | | | C-target | 63 | 87 | 99 | 117.1 | | | | | | | | | | Reaction from | Complete | Fast Fission with HE | Deep-Inelastic Collisions with | Some part of Direct reactions go to | | | previous L up to | Fusion-Fission | sequential fission | HE sequential fission | sequential LE fission | | | current L | rusion-rission | sequential lission | ne sequential lission | sequential LE lission | | | Z of Fissile nucleus | Z of compound | D-I- | | | | | | for targets | | w projectile | Around Z-projectile (92) | | | | Re: 96: C: 98 | 8: | 5 < Z < 92 | , | | | Fissile nucleus | 0 | B-1 | - d d t t d t - t | Classic Basic stile and acity | | | velocity | Compound velocity | Between compour | nd and projectile velocities | Close to Projectile velocity | | | Excitation Energy of | C: 204.3 MeV | Very broad energy rang | Very broad energy range (30 MeV– Compound nucleus excitation energy) | | | | Fissile nucleus | Be: 166.6 MeV | excita | | | | | Z-distribution of | 1 peak : Broad | | | Two narrow peaks with Z around | | | fission fragments | for Be: <z>=48</z> | broad distribution | on with peak @ Z~42-45 | 1 | | | | C: <z>=49</z> | | | 38-40 and 52-54 | | | Reaction channel | | | | DF (sequential fission after direct | | | designation | FF (fusion-fission) | IF (incomplete fusion-fis | sion, inelastic sequential fission) | reactions) | | | FOR INTERNAL INFORMATION | • | | | * | | | Yield Experimental (pre | liminary) | | | | | | Be-target | 79.6% | 15.4% | | 10% | | | C-target | 30% | | 60% | 10% | | | | • | - | | - | | | Fission cross sections [m | nb] calculated by LISE++ | | | | | | Be-target | 1990 | 494 | 153 | 874 | | | C-target | 1020 | 913 | 542 | 1013 | | | | • | | | | | #### Quasi-Fission -> 0 for these light targets - Next transmission analysis should be done, even reaction channel contributions are expected to be close the same - Previous analysis: yields -> cross sections -> contribution factors - Next analysis: yields & transmission -> factors -> cross sections # 238U(80MeV/u) + C reaction scheme ## e12006: PID Diamond target: ToF start - 1. Initial purpose: Projectile fragmentation products - . Finally working under in-flight fission mechanism OT, 18-Mar-2016, East Lansing 18 ### **Abrasion-Fission : Three Excitation-Energy regions model** Fission channel cross section plot for $E^* = 27.0^* dA MeV$ #### Fission channel cross-sections ABRASION-ABLATION - ²³⁸U + C Excit.Energy Method: < 2 >; <E*>:27.0*dA MeV Sigma: 19.00; No Intrinsic Thermalization NP=32; SE: "DB0+Cal1" Density: "auto" GeomCor: "Off" Tunlg: "auto" FisBar=#1 BarFac=1.00 Modes=1010 1000 110 # Fission kinematics and Abrasion excitation energy ### LISE++ Abrasion-Fission model #### Monte Carlo method #### 238U (79.56 MeV/u) + C Transmitted Fragment 83Kr (AFmid) #### special case: d(E*)=0 & thin target $E^* = 27 * dA$ (27 MeV per abraded nucleon) ### Distribution method #### **Stripper: Momentum** ## **3D fission kinematics** 238 U $_{(80\,\text{MeV/u})}$ + C \rightarrow 83 Kr $_{\text{Mid EER}}$ after target ### LISE** ## **3D fission kinematics** #### LISE⁺⁺ Bρ=3.1743 Tm, ### Reverse technique and its application - The Reverse technique sending experimental data back through a spectrometer to get a momentum vector at the target (Trajectory reconstruction) - Momentum vector after reaction in target (for example standard S800 technique) - Reaction mechanism study - ➤ Beam spot - > Angular acceptance vs emittance - Beam emittance measurement (X,A,Y,B,E) - > Study of correlations between beam emittance components - Determination of location of new ions production - ➤ BigRIPS case : production in the beam-dump - Benchmarks based on LISE⁺⁺ MC apparatus and spectrograph segmentation - > Beam dynamics visualization - > Beam optics calculation verification - > Experimental analysis and calibrations test - Experiment set-up feedback with LISE++ - > Obtaining experimental information by detecting devices in some (or one) locations - > Retracing up-stream (or down-stream) from detection locations based - ➤ Analysis, minimization ### Velocity-Z vs Theta plot MICHIGAN STATE UNIVERSITY LISE ++ Gate for Kr isotopes - The reverse separator technique developed in the LISE⁺⁺ package^{*} and coupled with the S800 configuration has been used to study fission mechanism properties. - Using LISE⁺⁺ technique allows fragment vectors measured at the final plane of a spectrometer to be replayed through in the backward direction of the spectrometer to reconstruct their trajectories in order to deduce the reaction place and momentum vector. ## Velocity-Z vs X,Y-Angles 3D-plots @ S800 Target position LISE** direct calculations are gated on the Scintillator position Pay attention that in LISE** calculations the isotope range is 83-92 instead experimental 83-90 ### Velocity-Z vs X,Y-Angles 3D-plots @ S800 Target position LISE** direct calculations are gated on the Scintillator position Pay attention that in LISE++ calculations the isotope range is 83-92 instead experimental 83-90 # e09063: Projectile fragmentation of ²³⁸U End of June, 2016 E.Kwan – current spokesperson # e09063: Projectile fragmentation of ²³⁸U Small Momentum acceptance Non-cooled PIN-diodes (50x50 mm² 0.5mm) # e09063: Projectile fragmentation of ²³⁸U ## Several words for.... LISE⁺⁺ Development (since last 2014 EXON) | LISE++: EXOTIC BEAM PRODUCTION WITH FRAGMENT SEPARATORS AND | | |---|----| | THEIR DESIGN | 30 | | O.B.Tarasov, D.Bazin | | | FUTURE PERFORMANCE AND MODEL IMPROVEMENTS IN THE LISE++ | | | SOFTWARE SUITE | 31 | | O.B.Tarasov, D.Bazin, M.P.Kuchera, B.M.Sherrill, K.V.Tarasova | | | | v.9.9 | |---|--| | | □ Optics: S & E construction methods | | | ■ Extended configurations in LISE** | | | ☐ Compensating dipole | | | Multipole : Quadrupole & Sextupole
superposition | | | ☐ TRANSPORT code file import to LISE** | | | ☐ Range Optimizer (Gas cell utility) update | | ſ | | | | ■ Extended Configurations | | | | | | ☐ Regular support routine: | | | user requests, calculation optimization, fix of bugs,
interface improvement. Databases and other | updates | v.9.10.345 | | | | | |--|--|--|--|--| | ☐ Update of Fusion reaction mechanism | | | | | | ☐ Optics minimization (up to 2 nd order) | | | | | | ☐ Reverse configurations: ray trajectory reconstruction | | | | | | □ Radiation Residue Calculator | | | | | | □ ETACHA4 (GUI) (still under construction) | | | | | | | | | | | | ☐ Others notable | | | | | | Decay Branching Database | | | | | | Ionization energy database & Ion mass calculator | | | | | | Utility "Angular Straggling & Rutherford scattering probabilities in compound" | | | | | | Rutherford scattering of primary beam in target in MC mode | | | | | | FRIB mass tables in the LISE⁺⁺ package | | | | | | Second order optics calculations of electric dipole | | | | | Next official version 10 will be released soon: October 2016 DT@FSEM.msu.edu 08/31/16 #### Conclusion - Fusion-Fission reaction products produced by a ²³⁸U beam at 24 MeV/u on Be and C targets were measured in inverse kinematics by use of the LISE3 fragment separator, and fission and fragmentation products at 80 MeV/u by use the S800 spectrograph and A1900+S800BL separation system. - The identification of fragments was done using the d*E-TKE-Brho-ToF* method. Germanium gamma-detectors were placed in the focal plane near the Si stopping telescope to provide an independent verification of the isotope identification via isomer tagging. - The experiments demonstrated excellent resolution, in Z, A, and q (fusion-fission Z<60), projectile fragmentation (Z~92). - The results demonstrate that a fragment separator can be used to produce radioactive beams using fusion-fission reactions in inverse kinematics, and further that in-flight fusion-fission can become a useful production method to identify new neutron-rich isotopes, investigate their properties and study production mechanisms. Mass, atomic number and charge-state distributions are reported for the two reactions. - The comparison of the experimental atomic-number and mass distributions combined with the analysis of the isotopic-distributions properties show that between the ⁹Be and the ¹²C target, the reaction mechanism changes substantially, evolving from a complete fusion-fission reaction to incomplete fusion or fast fission. - It has been demonstrated, that <u>the reverse tracking technique</u> can be used as a precise tool to get information for reaction mechanism characteristics. ### **Collaborators** O.B.T.,¹ O.Delaune,² F.Farget,² M.Bowry,¹ J.Berryman,¹ A.M.Amthor,³ V.Bader,¹ B.Bastin,² D.Bazin,¹ B.Blank,⁴ L.Caceres,² A.Chbihi,² T.Chupp,⁵ H.L.Crawford,⁶ B.Fernandez-Dominguez,⁷ A.Gade,^{1,8} S.Grevy,⁴ O.Kamalou,² S.M.Lukyanov,⁹ E.Lunderberg,¹ W.Mittig,^{1,8} D.J.Morrissey,^{1,10} J.Pereira,¹ L.Perrot,¹¹ A.Ratkiewicz,¹² F.Recchia,¹ M.-G.Saint-Laurent,² H.Savajols,² B.M.Sherrill,^{1,8} D.Smalley,¹ C.Stodel,² A.Stolz,¹ S.R.Stroberg,¹ J.C.Thomas,² A.C.Villari1,¹ D.Weisshaar,¹ S.Williams,¹ K.Wimmer,¹ J.Yurkon¹ 09/09/16 - OT @ EXON.Kazan.ru ¹ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321, USA ² Grand Accelerateur National d'Ions Lourds, CEA/DSM-CNRS/IN2P3, F-14076 Caen, France ³ Department of Physics, Bucknell University, Lewisburg, PA 17837, USA ⁴ CENBG, UMR 5797 CNRS/IN2P3, Universit_e Bordeaux 2, F-33175 Gradignan, France ⁵ Department of Physics, University of Michigan, Ann Arbor, Michigan 48104, USA ⁶ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁷ Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain ⁸ Dep. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA ⁹ FLNR, JINR, 141980 Dubna, Moscow region, Russian Federation ¹⁰ Dep. of Chemistry, Michigan State University, East Lansing, MI 48824, USA ¹¹ IPN Orsay, CNRS/IN2P3, F-91406 Orsay, France ¹² Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA