

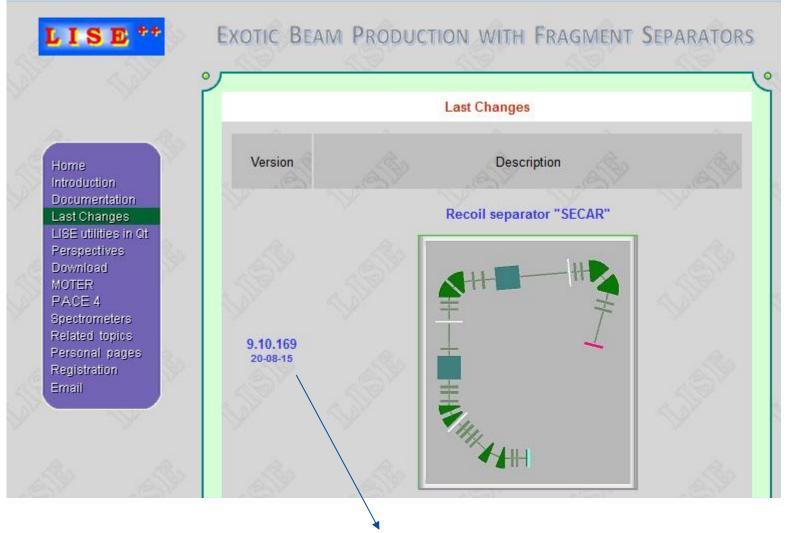
in the LISE⁺⁺ package

by Oleg Tarasov

According to the LISE⁺⁺ site

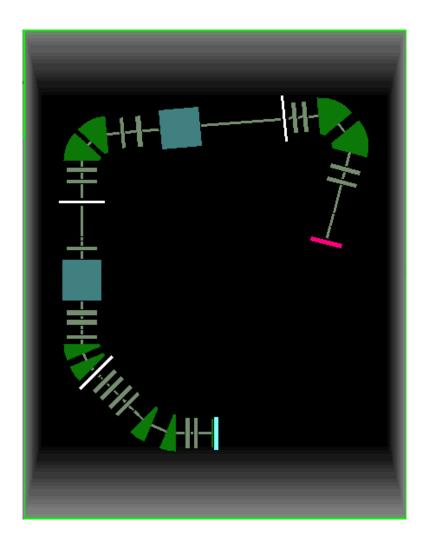
LISE⁺⁺: calculation of the transmission and yields of fragments produced and collected in a separator. This code allows to simulate an experiment, beginning from the parameters of the reaction mechanism and finishing with the registration of products selected by a separator.

- predict the separator settings necessary to obtain a specific RIB;
- predict the intensity and purity of the chosen RIB;
- simulate identification plots for on-line comparison;
- provide a highly user-friendly graphical environment;
- allow configuration for different fragment separators.


The LISE⁺⁺ code may be applied at <u>medium-energy and high-energy</u> facilities (fragmentand recoil-separators with electrostatic and/or magnetic selections).

- 2015: Go to the low energy domain!
- SHE -- Update of Fusion reaction mechanism , "SHELLS"
- S3 (GANIL), MSP144 (Dubna), PRISMA (LNL)
- Region of light nuclei "DRAGON",... and now "SECAR"

http://lise.nscl.msu.edu/changes.html


SECAR.pdf (49 pages)

High Order Extended Configurations

Version 9.10.169 from 08/20/2015

Link: Separator "SECAR"

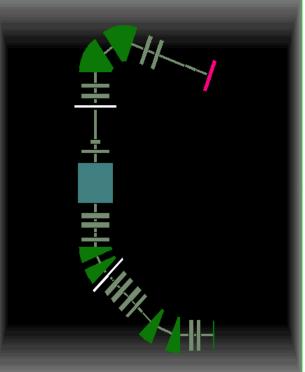
□ SECAR extended configurations

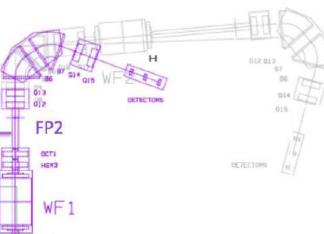
- SECAR documentation
- SECAR phase1
- LISE⁺⁺ modifications for SECAR
- SECAR files location
- SECAR phase 1 with COSY maps
- Optimization with LISE⁺⁺
- SECAR phase1: Angular Acceptance
- SECAR phase1: Momentum Acceptance
- SECAR phase1: Charge states selection
- **D** Experiment ¹⁵O(α,γ)¹⁹Ne
 - Fusion

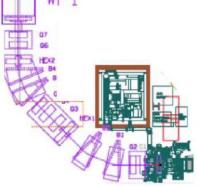
O.Tarasov, 08/20/15, East Lansing

- Selection
- Segmented configuration
- Open questions

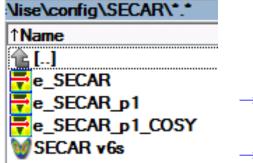
MICHIGAN STATE


Configuration "SECAR phase1"


T-11-2-12 CECAR Ordering I Order for a 1 ME


MICHIGAN STATE UNIVERSITY LISE++

[able 3.13. SE	CAR Optimize	ed Setup for a 1 V	F system
Quadrupole	Radius (m)	Pole tip field (T)	Gradient T/m
Q1	0.05	-0.36534	-7.3068000
Q2	0.068	0.21788	3.2041176
Q3	0.11	0.242644	2.2058545
Q4	0.08	-0.24501	-3.0626250
Q5	0.06	0.11128	1.8546667
Q6	0.14	0.181721	1.2980071
Q7	0.13	-0.0301475	-0.2319038
Q8			
Q9			
Q10			
Q11			
Q12	0.07	-0.22000	-3.1428571
Q13	0.05	0.20160	4.0320000
Q14	0.05	0.13147	2.6294000
Q15	0.05	-0.1450	-2.9000000
HEX(Q1)	0.05	-0.0006	
HEX1	0.11	0.008620	
HEX2	0.12	0.01449	
HEX3	0.11	-0.0435	
OCT1	0.07	0.006225	



LISE⁺⁺ files

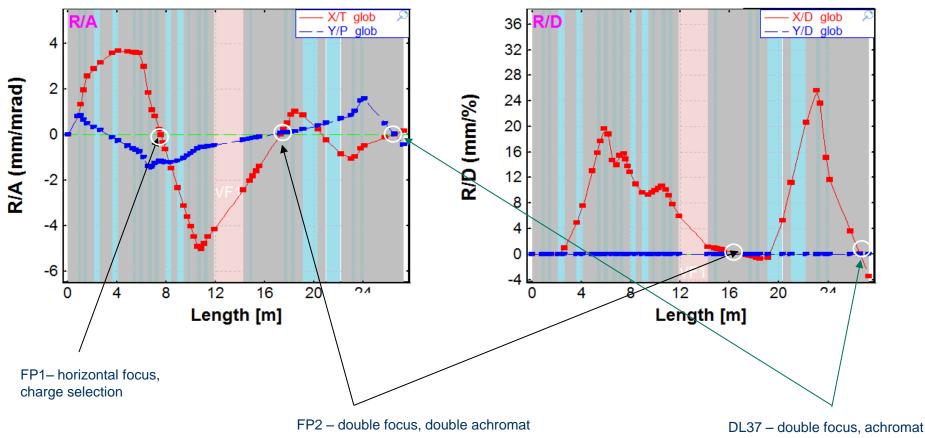
ViseVilesVexamplesVSECARV*.
↑Name
€ []
<mark></mark> ≓e_SECAR
<pre>Fe_SECAR_p1_beam</pre>
e_SECAR_p1_COSY
e_SECAR_p1_reaction

- \rightarrow SECAR extended for primary beam (not optimized yet)
- \rightarrow SECAR phasel extended for primary beam
- \rightarrow SECAR phasel extended with COSY 5th order maps
- \rightarrow SECAR phase1 extended : ¹⁵O(α, γ)¹⁹Ne

LISE⁺⁺ configurations

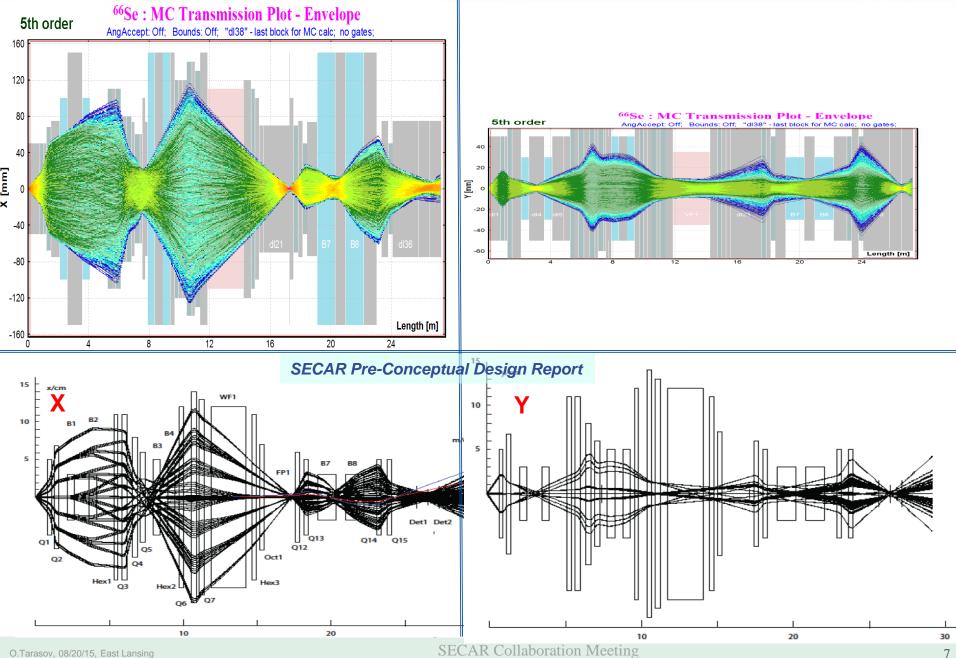
- \rightarrow SECAR extended configurations
- \rightarrow COSY file to generate SECAR maps for LISE⁺⁺

SECAR segmented configurations will be done soon



File: e_SECAR_phase1_COSY_o5.lpp

First order matrix elements


⁶⁶Se (3.1 MeV/u); Settings on ⁶⁶Se^{21+..21+}; Config: DSSSSSDSDSSSSSSSSSS dp/p=14.49%; Brho(Tm): 0.8000, 0.8000, 0.8000, 0.8000, 0.8000....

SECAR phase 1 with COSY maps : LISE⁺⁺ MC envelopes



File: e_SECAR_phase1.lpp

Using fields from the SECAR Pre-Conceptual Design Report

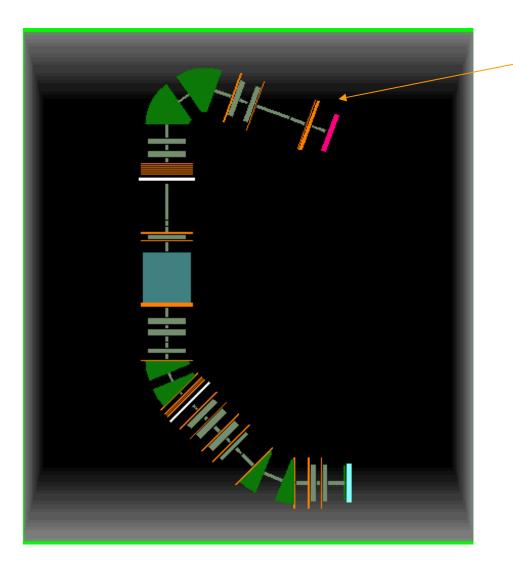
Global matrix

First order matrix elements

FP2 – no double focus, small dispersion

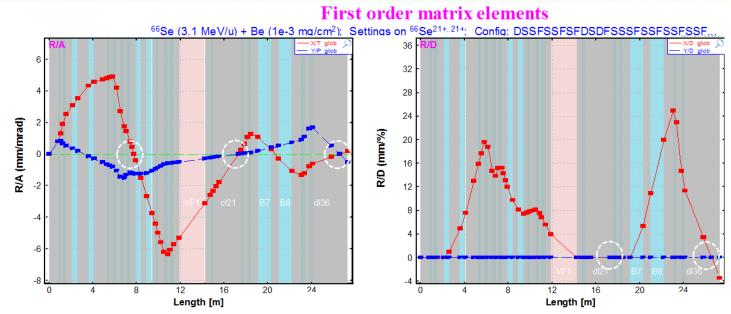
— Global mat	nx					
1.71399	0.7896	0	0	0	1.27182	[mm]
0.75758	0.93241	0	0	0	0.08012	[mrad]
0	0	15.94788	1.06042	0	0	[mm]
0	0	2.52905	0.23087	0	0	[mrad]
-0.4117	-0.9308	0	0	1	-9.86959	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	

– Global matrix

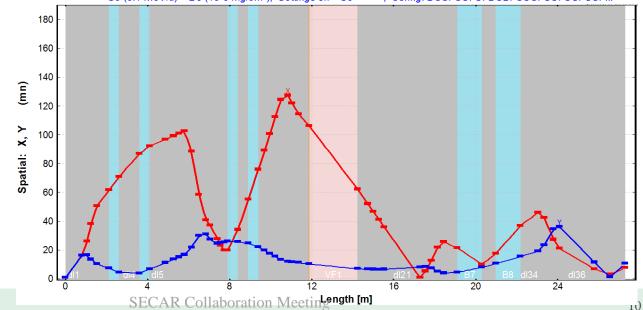

DL37 –	no X-focus,	small	dispersion
--------	-------------	-------	------------

alobalmat	110					
7.39269	3.46894	0	0	0	5.11233	[mm]
3.19314	1.6336	0	0	0	-2.49489	[mrad]
0	0	-1.96752	-0.13856	0	0	[mm]
0	0	11.19827	0.28033	0	0	[mrad]
2.98263	0.65761	0	0	1	-24.18632	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	

SECAR phase1 optimization in LISE⁺⁺

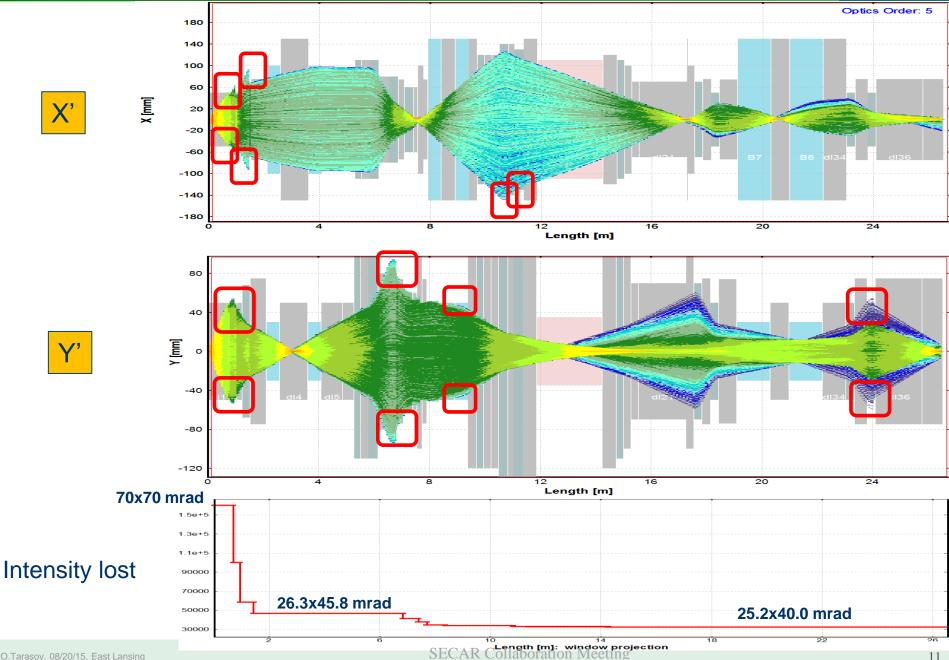

28 constraints,11 variable fields

Optics fit	
Blocks with parameters to vary	Active Constraint blocks
#01-q Position@005: Q1 #02-q Position@028: Q2 #03-q Position@024: Q3 #04-q Position@024: Q4 #05-q Position@027: Q5 #06-q Position@047: Q7 #08-q Position@047: Q12 #09-q Position@067: Q12 #09-q Position@069: Q13 #10-q Position@078: Q14 #11-q Position@078: Q15	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
N iter = 20000	
FIT Previuos 66	Optics Settings
values	(fast editting) Browse output file
Sho	w initial conditions 📃 Matrix Plot
🗶 Exit	📐 🛛 Beam-Sigma Plot
? Help	SECAR_phase1_v7_original.fit



SECAR phase1 optimization in **LISE**⁺⁺ : results

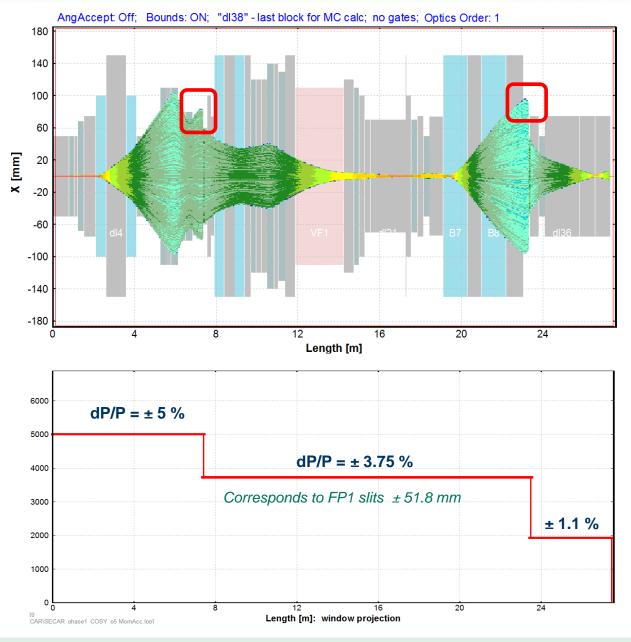
Beam Sigmas: spatial 66Se (3.1 MeV/u) + Be (1e-3 mg/cm²); Settings on ⁶⁶Se^{21+..21+}; Config: DSSFSSFSFDSDFSSSFSSFSSFSSFSSFSSF...



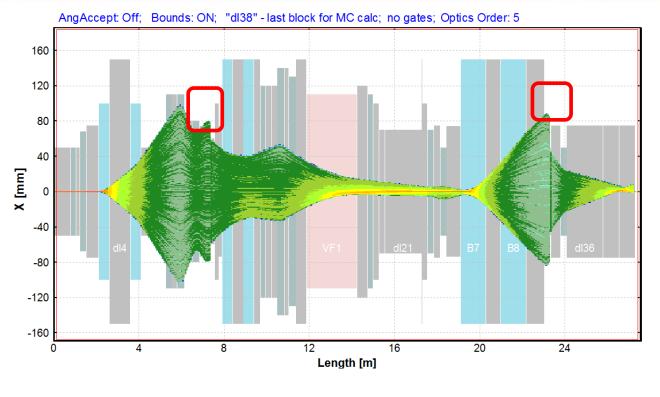
element	Initial	LISE ⁺⁺ result	delta
Q1	-3.6534	-3.4260	0.2274
Q2	2.1788	1.7540	-0.4248
Q3	2.4264	2.3870	-0.0394
Q4	-2.4501	-2.4240	0.0261
Q5	1.1128	1.1480	0.0352
Q6	1.8172	1.8350	0.0178
Q7	-0.3015	-0.2694	0.0321
Q12	-2.2000	-2.2020	-0.0020
Q13	2.0160	1.9960	-0.0200
Q14	1.3147	1.3100	-0.0047
Q15	-1.4500	-1.4450	0.0050

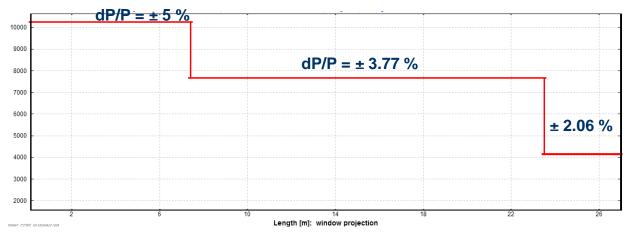
Angular Emittance Loss (5th order optics)

11



Momentum Acceptance


- Emitta	nce —			
?	(sig	leam CARD ma, semi-ax half-width	is, (Distribution	I
1. X	mm	0.1	Gaussian	•
2. T	mrad	0.1	Gaussian	•
3. Y	mm	0.1	Gaussian	•
4. P	mrad	0.1	Gaussian	•
5. L	mm	0	Gaussian	-
6. D	%	5	Rectangle uniform	⊡



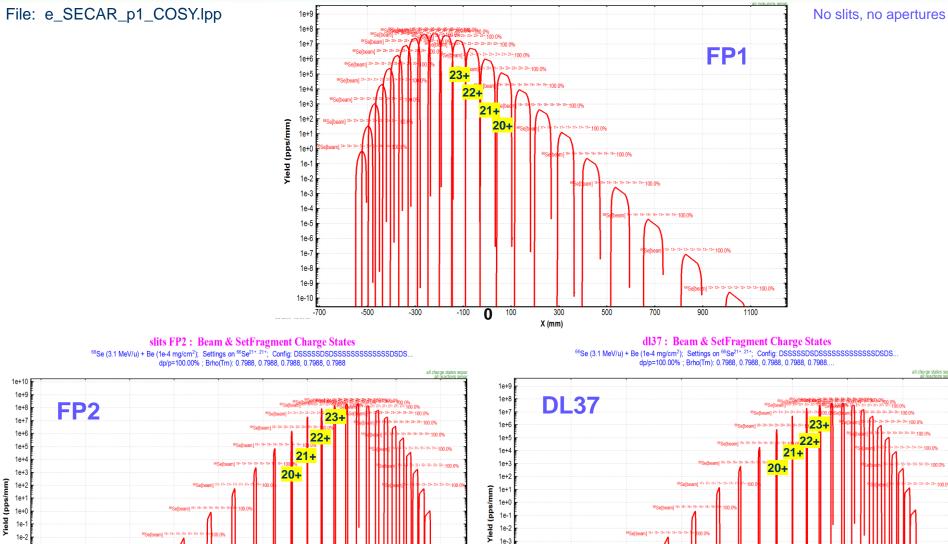
Momentum Acceptance

Emitta	 B (sig	eam CARD ma, semi-ay half-width	ris, (Distribution r
1. X	mm	0.1	Gaussian 💌
2. T	mrad	0.1	Gaussian 💌
3. Y	mm	0.1	Gaussian 💌
4. P	mrad	0.1	Gaussian 💌
5. L	mm	0	Gaussian 🗨
6. D	%	5	Rectangle uniform 📃

1e-3

1e-4

1e-5


Charge States Selection: "Distribution" method

1000

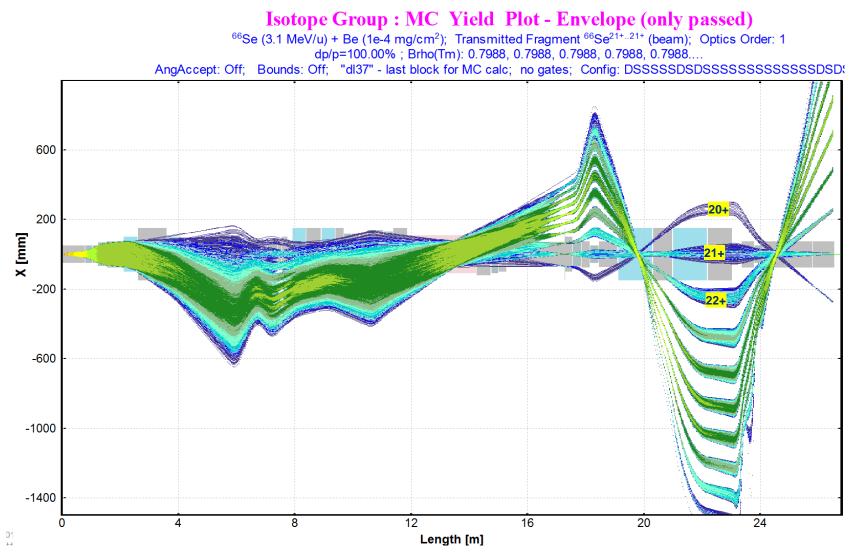
2000

14

1e-4

1e-5

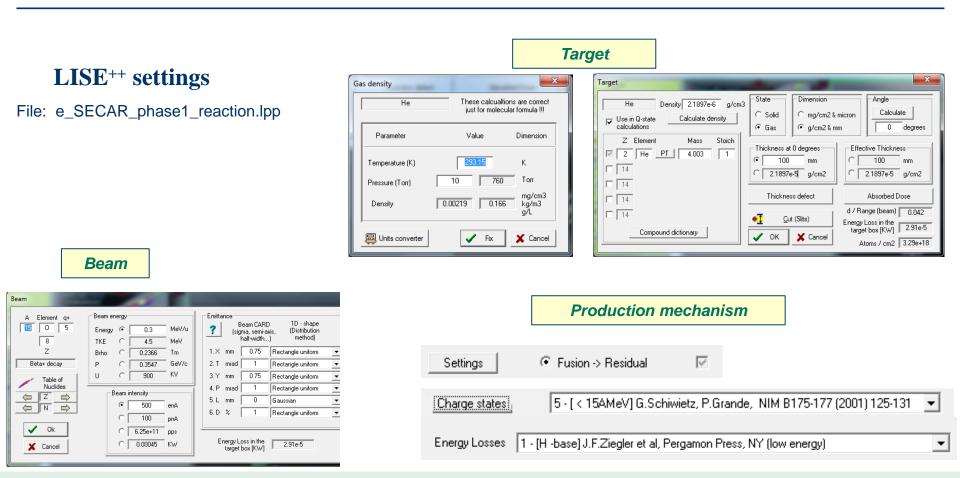
1e-6 1e-6 1e-7 1e-7 1e-8 1e-8 1e-9 1e-9 1e-10 1e-10 SECAR Collaboration Meeting 0.Tarasov, 08/20/15, East Lansing -2000 -1000 0 -600 -400 -200 Ô 200 400 X (mm)


X (mm)

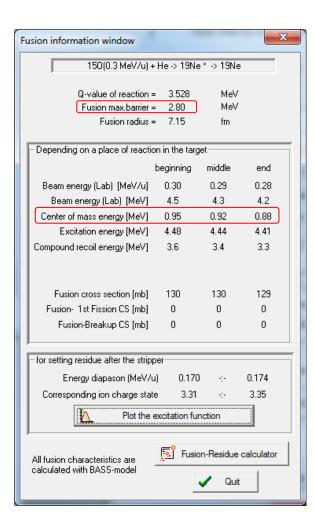
No slits, no apertures

1st order

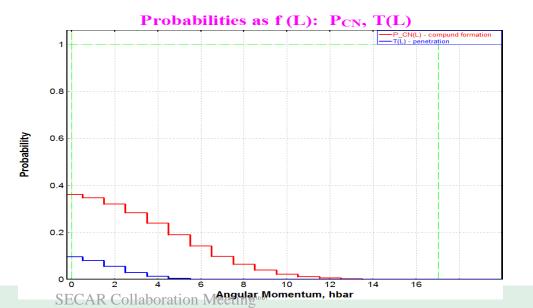
O.Tarasov, 08/20/15, East Lansing



Experiment ¹⁵O(α , γ)¹⁹Ne

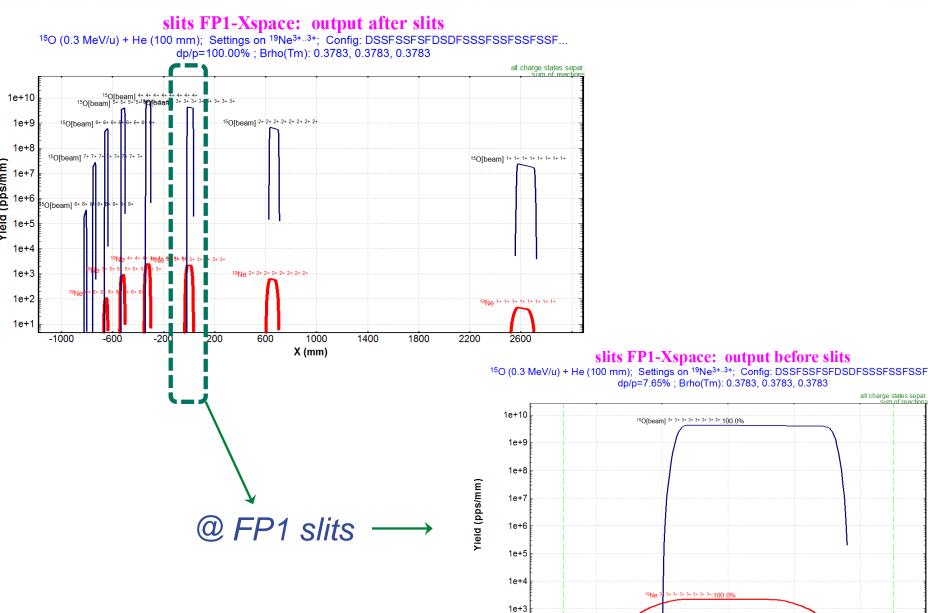

Table 3.14. Transmission results for a set of crucial reactions from the target to the final focus in the single VF system.

Reaction	Energy (MeV/u)	Transmission
¹⁵ O(α,γ) ¹⁹ Ne	0.3	95



Partial cross sections ¹⁵O(0.3 MeV/u) + ⁴He -> ¹⁹Ne* (E_{CM}=0.9 MeV); [no P_{CN}, Penetration^{Q.M}] Cross Sections[mb]: Intr=3.61e+02; Comp=1.07e+02; QE=2.54e+02; L_{crit}=17; L_{max}Graz=0.0; L_{max}LISE=0.0; L_{B fis=0}=19; Vertical lines correspond to L_{crit} & L_{max} Interaction - Compound 1e+4 - Flastic 5 Partial cross section [mb] 1e+3 5 1e+2 1e+1 10 12 14 Δ 6

Angular momentum [hbar]



O.Tarasov, 08/20/15, East Lansing

Experiment ¹⁵O(α , γ)¹⁹Ne : selection

-40

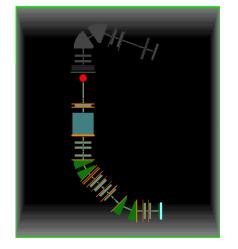
-20

0 X (mm)

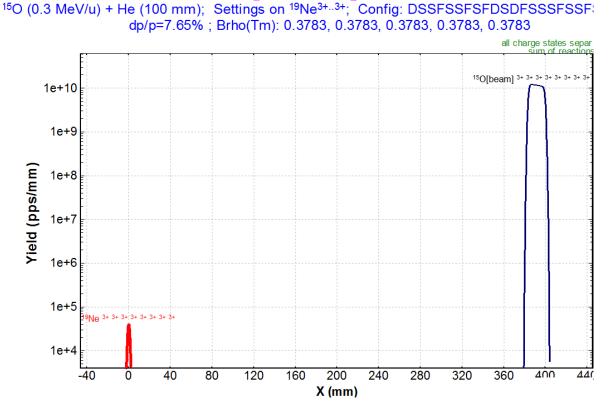
-60 9-08-2015 18:39:31

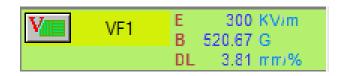
SECAR^ECollector of the second of the secon

O.Tarasov, 08/20/15, East Lansing


18

20


40



In front of the Mass Slits (FP2) with the Charge slits and Angular acceptances

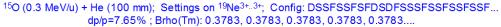
dl21-Xspace: output after slits

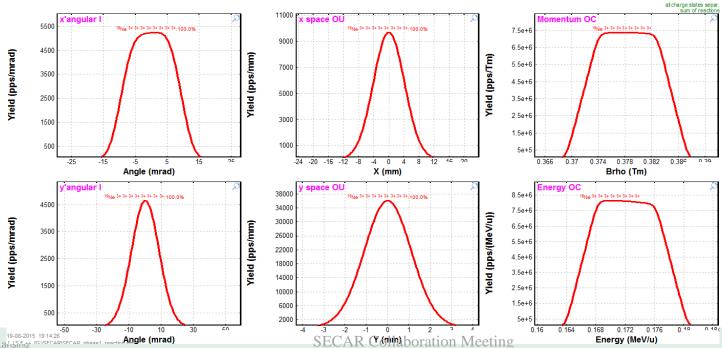
Pay attention for The Wien filter parameters!!! The purpose of E(or B) choice is to compensate dispersion after dipoles!

Experiment ¹⁵O(α , γ)¹⁹Ne : selection

19Ne

¹⁹Ne³⁺ after the DL37


Only ¹⁹Ne³⁺ passing through the separator !

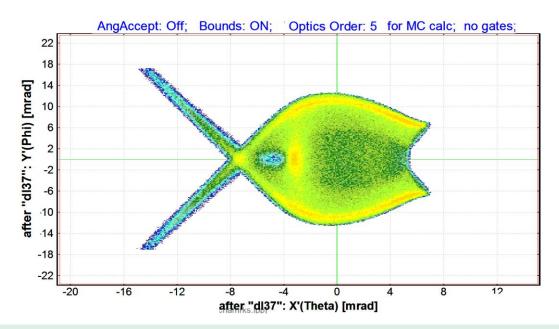

Q1(tuning)		3	
Reaction		FusRes	
Ion Production Rate	(pps)	9.9e+4	
Total ion transmission	(%)	37.077	
Total: this reaction	(pps)	9.9e+4	_
Total: All reactions	(pps)	9.9e+4	
K-Section in target	(mb)	1.3e+2	
Farget	(%)	39.09	
Inreacted in material	(%)	100	_
Q (Charge) ratio	(%)	39.09	
Jnstopped in material	(%)	100	_
tuning	(%)	99.32	
K angular transmission	(%)	99.32	
Y angular transmission	(%)	100	

Beta+ decay (Z=10, N=9)

¹⁹Ne³⁺ transmission 94.8% Main cut by the 2-nd horizontal angular acceptance

dl37

O.Tarasov, 08/20/15, East Lahlshfigt IG ISECARISECAR



Open Questions:

- 1. Modify the two-body kinematics mechanism for the HI & γ case
- 2. Primary beam scattering (large angles)
- 3. Create the Wien characteristics utility to compensate a dipole dispersion

Acknowledgement:

to Hendrik Schatz and Fernando Motes for documents and files providing, to Mauricio Portillo with COSY actions

