

1. Introduction

Reaction mechanisms : Experiment vs. Calculation

++

Se

50% Real experimentalist

- Fusion-Fission
 ²³⁸U(24 MeV/u)+Be,C
 GANIL
- In-flight fission, projectile fragmentation
 ²³⁸U(345 MeV/u)+Be,Pb RIKEN
- Projectile fragmentation
 ⁷⁶Ge, ⁸²Se (140 MeV/u)+Be,W
 MSU
- "Double" projectile fragmentation
 ⁴⁸Ca, ⁷⁰Zn (345 MeV/u)+Be RIKEN

50%

Unreal* theorist

Table

Reactions and production models implemented in LISE++

Reaction	Production cross-section model	Ref.
Projectile fragmentation	EPAX 2.15, 3.1	[17]
	LISE++ abrasion-ablation	[27]
Fusion-residues	LisFus model	[27]
	PACE4 (manually)	[28]
Fusion-fission	LISE++ package	[29]
Coulomb fission	LISE++ package	[30]
Abrasion-fission	LISE++ 3EER model	[31]
Two body kinematics	EPAX 2.15 (temporary)	

References:

[17] K. Summerer, B. Blank, Phys. Rev. C 61 (2000) 034607; K. Summerer, Phys. Rev. C 86 (2012) 014601
 [27] O. Tarasov, D. Bazin, Nucl. Instr. and Meth. B 204 (2003) 74.

- [28] A. Gavron, Phys. Rev. C 21 (1980) 230.
- [29] O.B. Tarasov, A.C.C. Villari, Nucl. Instr. and Meth. B 266 (2008) 4670-4673.
- [30] O.B. Tarasov, Eur. Phys. J. A 25 (2005) 751; Tech. Rep. MSUCL1299, NSCL, Michigan S.U. 2005.
- [31] O.B. Tarasov, Tech. Rep. MSUCL1300, NSCL, Michigan State University, 2005.

* practical?

Way to talk: Experimental Result \rightarrow Model \rightarrow Deficiency

The program LISE⁺⁺ is designed to predict intensities and purities for the planning of experiments with inflight separators, as well as for tuning experiments where the results can be quickly compared to on-line data.

O. B. Tarasov and D. Bazin, Nucl. Instr. Meth. B 266 (2008) 4657

MICHIGAN STATE

E ++

The LISE⁺⁺ package which includes also the PACE4, Global, Charge, Spectroscopic calculator codes can be downloaded freely from the following site: <u>http://lise.nscl.msu.edu</u>.

Example of set-ups in LISE⁺⁺

8

Darek, what is about FMA? ☺

09/02/15 --- OT @ ECT.Trento.Italy

Sketch of main production mechanisms for RIB

MICHIGAN STATE UNIVERSITY LISE++

S NSCL Iise.nscl.msu.edu/9 8/ISOL/ISOLatLISE.pdf

100%

A hotel in Eastwood Towne Center

MICHIGAN STATE

LISE++

UNIVER

1 of 12 Page: Utilities 1D-Plot 2D-Plot Databases Help LISE++ for Excel CODES : Charge, Global, PACE4, etc. Radioactivity, decays Reactions utilities Plots : Energy loss, Ranges, Straggling, etc. NSCL / FRIB / ISOL rates NSCL / Europe / RIKEN primary beam lists Set-up utilities Range optimizer (Gas cell utility) Gas pressure optimization for gas-filled dipole CATCHER utility (ISOL, Fusion-Residual) Rate & transmission calculation: batch mode Stripper foil lifetime

plot: NSCL PAC35 rates plot: NSCL PAC35 beams link: NSCL PAC35 rates plot: FRIB rates (v.1.07) plot: FRIB beams (v.1.07) link: FRIB (v.1.06) Location of "FRIB" isotopes plot: ISOL rates

link: ISOL rates features

p (70 MeV, 1 mA) + ²³⁸U

ISOL yields @ LISE⁺⁺

🛆 G

Automatic Zoom 🗘

Extraction 10 ms, Efficiency 5%

culate a range of protons, define number of atoms

pling inverse kinematics, set p-target thickness (using the same number of atoms)

- 3. Appling inverse kinematics, set Beam characteristics. No charge states
- Set Abrasion-Fission as production mechanism 4.
- 5. Load settings for ²³⁸U+p Abrasion-Fission
- 6. Insert "Delay" and "Faraday cup" blocks after the stripper
- Set values in the "Delay" block * 7.
- 8. Calculate isotopes production
- 9. Plot calcium isotopes yields, Save yields in file
- 10. Results
- 11. How to use (and plot) with other ISOL parameters

LISE⁺⁺ for theorists

۲

۰.

2. Fusion-Fission

The LISE⁺⁺ fusion-fission model [1] has been developed to estimate <u>secondary beams</u> <u>intensities</u> based on:

- □ The Bass algorithm to estimate complete fusion cross section [2],
- □ The fast analytical evaporation model LisFus [3] to calculate a fission channel value and de-excitation of fission fragments.
- □ The semi-empirical model of J.Benlliure [4] which describes fission properties of a large number of fissile nuclei are a wide range of excitation energies.

O.T. and A.C.C.Villari, NIM B 266 (2008) 4670.
 R.Bass, Phys.Rev.Lett. 39 (1977) 265.
 O.T. and D.Bazin, NIM B 204 (2003) 174.
 J.Benlliure et al., Nucl.Phys. A628 (1998) 458.

Main features of the model:

- Production cross-section of fragments
- Kinematics of reaction products
- Spectrometer tuning to the fragment of interest optimized on maximal yield (or on good purification)

Advantages of in-flight fusion-fission to explore neutron-rich 55 < Z < 75 region are comparing to AF & CF:

- the heavier fissile nucleus competing with abrasion-fission (Z < 92),
- the higher excitation energy of a fissile nucleus competing with Coulomb fission of the ²³⁸U primary beam.

Using low energy fusion-fission beams:

- Several tens of new* isotopes are expected to be produced in the region 55 < Z < 75 using a ²³⁸U beam with light targets according to the LISE⁺⁺ Fusion-Fission model,
- Properties of these new nuclei allow to test nuclear models, in particular to understand the r-process abundance patterns,
- Reaction mechanism study.

Open Questions:

- What is optimal conditions, for example the energy of primary beam, the target material, thickness and so on?
- How reliable are simulations? Intensities, purification?
- What are contributions from other reaction mechanisms?
- Separation, Identification, Resolution?

Fig. Two-dimensional yield plot for fragments produced in the 238 U (20 MeV/u,1pnA) + D (12 mg/cm²) reaction and separated by SISSI + Alpha

A experiment to show separation and identification of fusion-fission products has been performed using the LISE3 fragment-separator at GANIL.

* in 2008

Fusion-Fission experiment in inverse kinematics @ LISE separator

GANIL e547

Spokesperson: O.Tarasov

Preliminary arxiv.org:1302.1981 By O. Delaune, F. Farget, et al. O.Delaune,² F.Farget,² O.B.T.¹, A.M.Amthor,² B.Bastin,² D.Bazin,¹ B.Blank,³ L.Caceres,² A.Chbihi,²
B.Fernandez-Domnguez,⁴ S.Grevy,³ O.Kamalou,² S. Lukyanov,⁵ W.Mittig,^{1.6} D.J.Morrissey,^{1.7} J.Pereira,¹
L.Perrot,⁸ M.-G.Saint-Laurent,² H. Savajols,² B.M.Sherrill,^{1.6} C. Stodel,² J. C. Thomas,² A. C. Villari⁹
¹ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA
² Grand Accélérateur National d'Ions Lourds, CEA/DSM-CNRS/IN2P3, F-14076 Caen, France
³ CENBG, UMR 5797 CNRS/IN2P3, Université Bordeaux 1, F-33175 Gradignan, France
⁴ Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
⁵ FLNR, JINR, 141980 Dubna, Moscow region, Russian Federation
⁶ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
⁷ Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
⁸ IPN Orsay, CNRS/IN2P3, F-91406 Orsay, France
⁹ Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA

- A ²³⁸U beam at 24 MeV/u with a typical intensity of 10⁹ pps was used to irradiate a series of Be & C targets
- The beam was incident at an angle of 3° in order not to overwhelm the detectors with the beam charge states
- Preliminary detectors calibration with the primary beam, then particle identification has to be proved by gamma from know isomers

- The experiment demonstrated excellent resolution, in Z, A, and q.
- The results demonstrate that a fragment separator can be used to produce radioactive beams using fusion-fission reactions in inverse kinematics,
- In-flight fusion-fission can become a useful production method to identify new neutron-rich isotopes, investigate their properties and study production mechanisms.

Elemental distributions of fission fragments

We need a fast analysis of partial cross sections!!

Update of Fusion mechanism in LISE⁺⁺

Projectile Fragmentation and Abrasion-Fission are dominated reaction mechanisms in LISE⁺⁺ for rare beam production, where we are developing our own models

Do not hesitate to use Low-Energy reaction computing centers as NRV for more sophisticated solutions with Channel Coupling, Langevin equations and so on

Fission Barrier Vanishing as f(L)

MICHIGAN STATE

Transmission for a barrier & CN formation probabilities as f(L)

Potential energy and Partial cross sections

e547 experiment : Be vs. C targets

average for 17-24 MeV/u range			
		Targets	
Fission Barrier Vanishing	Reactions	Ве	с
Sierk	DIC+FA	19%	42%
	Fusion-Fission	56%	29%
	QE	25%	29%
Cohen	DIC+FA	8%	29%
	Fusion-Fission	66%	41%
	QE	25%	29%

Momentum (hbar)	Be	С
L (Bfis=0)	67	63
L critical	75	87
L direct @ Rint	79-12	101
L max (grazing)	90.5	118.9
L max (LISE)	91.0	119.5

Carbon target.. 50% split... Why? This is due to difference of moments of inertia between C+U and Be+U just above where fission barrier go to zero

19

MICHIGAN STATE

ι.

R

E ++

S NSCL

e547 experiment: results interpretation

MICHIGAN STATE

Be-target

• Three main channels with earlier discussed parameters were used in fitting

Preliminary!!!

- Reaction positions and widths were used the same in both case during fitting process except FF positions (48 and 49)
- From fitting results it follows, that Fusionfission dominates in the case of Be-target, and sequential fission in the case of Ctarget
- New LISE⁺⁺ partial cross section analysis fairly describes experimental results
- Significant distinction in elemental distributions of fragments produced with two different light target is explained by larger DIC component with C-target due to fission barrier vanishing
- Fusion-Fission mechanism is responsible in both cases for High-Z isotope production (Z>60)

C-target

X

3. Abrasion-Fission

3.1 Abrasion reactions: models

Abrasion reactions : LISE⁺⁺ **de-excitation channels**

			$\begin{array}{cccc} & & & & & & & & & & & & & & & & & & & $
De-excitation channel	Collisions	Reaction	Final Abrasion-Evaporation Residues 10 ² Final Abrasion-Evaporation Residues 10 ² Fission deexcitation channel
Abrasion – <u>Evaporation</u> Abrasion – Ablation	peripheral	Projectile fragmentation	g g s s s s s s s s s s s s s
Abrasion – <u>Fission</u>	peripheral	In-flight fission Projectile fission	
Abrasion – <u>Breakup</u>	central	Multi- fragmentation	20 40 60 80 Protons

Nuclear charge yields for different de-excitation channels after ²³⁸U(1AGeV) abrasion on a Be-target.

- The LISE⁺⁺ AA model is initially based on the version of J.-J.Gaimard and K.H.Schmidt, NPA531 (1991) 709
- The LISE⁺⁺ AA model is analytical, that allows to calculate low cross sections of very exotic nuclei
- □ The Abrasion-Ablation approach meets three principal difficulties
 - a. Determination of Excitation energy parameters (models) for each reaction
 - b. Plenty of other parameters
 - c. Suggesting <u>negligible contribution of dissipation processes</u> during abrasion (it can be true at high energies with light targets)
- □ Four excitation energy models are implanted in the code
- □ The Ablation step (Evaporation cascade) uses a mass table to obtain separation energies

²⁰⁶Bi excitation distributions

Abrasion-Fission

ABRABLA : Abrasion-Ablation Monte Carlo J.-J. Gaimard, K.-H. Schmidt, Nucl. Phys. A 531 (1991) 709.

PROFI : semi-empirical fission Monte-Carlo code J. Benlliure, A. Grewe, M. de Jong, K.-H. Schmidt, S. Zhdanov, Nucl. Phys. A 628 (1998) 458

LISE⁺⁺ 3EER Abrasion-Fission model (analytical)
 O.T., Tech. Rep. MSUCL1300, NSCL, Michigan State University, 2005
 <u>http://lise.nscl.msu.edu/7_5/lise++_7_5.pdf</u>

Abrasion-Fission : ocean of fissile nuclei

S NSCL

Abrasion-Fission : ocean of hot fissile nuclei

S NSCL

Abrasion-Fission

Splitting 1000 fissile nuclei on 3 regions based on their excitation energy, Getting mean A,Z,E* values based on their cross sections

Fission excitation functions

Abrasion-Fission : 3 EER model

MICHIGAN STATE

R

SITY

E ++

Describes well intense final fragments

3.2 Abrasion fission: experiment

Nuclear Instruments and Methods in Physics Research B 317 (2013) 756-768

Production cross section measurements of radioactive isotopes by BigRIPS separator at RIKEN RI Beam Factory

H. Suzuki^{a,*}, T. Kubo^a, N. Fukuda^a, N. Inabe^a, D. Kameda^a, H. Takeda^a, K. Yoshida^a, K. Kusaka^a, Y. Yanagisawa^a, M. Ohtake^a, H. Sato^a, Y. Shimizu^a, H. Baba^a, M. Kurokawa^a, T. Ohnishi^a, K. Tanaka^a, O.B. Tarasov^b, D. Bazin^b, D.J. Morrissey^b, B.M. Sherrill^b, K. Ieki^c, D. Murai^c, N. Iwasa^d, A. Chiba^d, Y. Ohkoda^d, E. Ideguchi^e, S. Go^e, R. Yokoyama^e, T. Fujii^e, D. Nishimura^f, H. Nishibata^g, S. Momota^h, M. Lewitowiczⁱ, G. DeFranceⁱ, I. Celikovicⁱ, K. Steiger^j

Abrasion fission

Coulomb fission

²³⁸U + Be (7mm) at 345 MeV/u

$$Be^{target} B\rho = 7.249 Tm$$

²³⁸U + Pb (1.5 mm) at 345 MeV/u

 $B\rho = 6.992 \text{ Tm}$

LISE⁺⁺ : Cross Sections & Kinematics & Separation

1 setting, no energy degraders used

$B\rho = 7.2 \text{ Tm} \pm 1\%$

Fairly good reproduction

Courtesy of T.Kubo (BigRIPS, RIKEN)

8

2 settings: ¹⁶¹Pr setting and ¹⁸⁰Er setting

- Selected isomers for isomer tagging among new isomers in 2011
- Known isomers used for isomer tagging in 2011, 2013

Fission channel cross-sections

ABRASION-ABLATION - 238U + Be

Excit.Energy Method:< 2 >; <E*>:27.0*dA MeV Sigma:13.00; No Intrinsic Thermalization NP=32; SE:"DB0+Cal2" Density:"auto" GeomCor:"Off" Tunlg:"auto" FisBar=#0 BarFac=1.10 Modes=1010 1000 110

New Reaction Mechanism 92 40 e-02 4				226 <mark>U</mark> 1.1e-01	227U 2.3e-01	228U 4.6e-01	229 <mark>U</mark> 8.4e-01	230 <mark>U</mark> 1.6e+00	231U 3.0e+00	232U 5.6e+00	²³³ U 1.2e+01	234 <mark>U</mark> 2.3e+01	²³⁵ U 5.5e+01	²³⁶ U 1.0e+02	237U 2.0e+02		
Settings for the 2014				²²⁵ Pa 4.0e-01	²²⁶ Ра 9 8е-01	²²⁷ Pa 1.7e+00	228Pa	²²⁹ Pa 5.0e+00	²³⁰ Pa 9.7e+00	²³¹ Pa 1.3e+01	²³² Pa 2 5e+01	²³³ Pa 3.0e+01	²³⁴ Pa 5.4e+01	²³⁵ Pa 4 7e+01	²³⁶ Pa 6 9e+01	237 <mark>Pa</mark> 2 8e+01	
experiment 90 Th 223Th e-02 2 5e-01				²²⁴ Th 7 8e-01	²²⁵ Th 1.5e+00	²²⁶ Th 3 1e+00	²²⁷ Th 5 2e+00	²²⁸ Th 8 7e+00	²²⁹ Th 1 2e+01	²³⁰ Th 1 8e+01	231Th 2 5e+01	²³² Th 3 0e+01	²³³ Th 3 4e+01	²³⁴ Th 3 0e+01	235 Th 2.2e+01	²³⁶ Th 6.9e+00	
		¹ Ac e-02	222Ac 2.8e-01	²²³ Ac 5.6e-01	²²⁴ Ac 1.4e+00	²²⁵ Ac 1.5e+00	²²⁶ Ac 5.8e+00	²²⁷ Ac 8.4e+00	²²⁸ Ac 1.3e+01	²²⁹ Ac 1.5e+01	²³⁰ Ac 2.1e+01	²³¹ Ac 1.8e+01	²³² Ac 1.7e+01	²³³ Ac 1.1e+01	²³⁴ Ac 6.1e+00	²³⁵ Ac 1.3e+00	
otons (Z)			221Ra 2.7e-01	²²² Ra 6.5e-01	223Ra 1.5e+00	²²⁴ Ra 2.9e+00	²²⁵ Ra 5.6e+00	²²⁶ Ra 9.2e+00	²²⁷ Ra 1.2e+01	²²⁸ Ra 1.6e+01	²²⁹ Ra 1.6e+01	²³⁰ Ra 1.6e+01	²³¹ Ra 1.1e+01	²³² Ra 6.8e+00	²³³ Ra 3.2e+00	²³⁴ Ra 6.8e-01	
			220 <mark>Fr</mark> 2.2e-01	²²¹ Fr 4.3e-01	222Fr 1.2e+00	223Fr 2.1e+00	²²⁴ Fr 4.3e+00	²²⁵ Fr 6.8e+00	226Fr 9.3e+00	²²⁷ Fr 1.1e+01	²²⁸ Fr 1.2e+01	²²⁹ Fr 9.2e+00	²³⁰ Fr 6.7e+00	²³¹ Fr 3.2e+00	²³² Fr 1.4e+00	233 <mark>Fr</mark> 2.1e-01	
			<mark>219</mark> Rn 9.7e-02	219 <mark>Rn 220Rn 221Rn 222Rn 223Rn 224Rn</mark>	²²⁵ Rn 5.6e+00	n 226Rn 227Rn 228Rn 229Rn 239 00 7.5e+00 6.8e+00 5.9e+00 3.8e+00 1.9e		²³⁰ Rn 1.9e+00	²³¹ Rn 6.5e-01	³¹ Rn 2 ³² Rn 5e-01 1.4e-01	Û						
д. 5		⁷ At e-02	<mark>²¹⁸At</mark> 4.8e-02	219 <mark>At</mark> 1.2e-01	220At 2.6e-01	²²¹ At 5.9e-01	222At 1.1e+00	²²³ At 2.0e+00	224At 2.8e+00	²²⁵ At 3.5e+00	²²⁶ At 3.7e+00	227At 2.8e+00	228At 2.0e+00	²²⁹ At 8.1e-01	230At 2.9e-01	<mark>231At</mark> 5.1e-02	1e+02 3e+01 1e+01
	84	Po e-03	217 <mark>Po</mark> 1.6e-02	218 <mark>Po</mark> 4.0e-02	219 <mark>Po</mark> 9.1e-02	220Po 2.2e-01	²²¹ Po 4.0e-01	²²² Po 7.9e-01	223Po 1.1e+00	224Po 1.5e+00	²²⁵ Po 1.5e+00	226Po 1.2e+00	227 <mark>Po</mark> 7.1e-01	228 <mark>Po</mark> 3.7e-01	229 Po 9.9e-02	2 ³⁰ Po 1.7e-02	3e+00 1e+00 3e-01
		⁵ ₿i e-03	216 <mark>B</mark> i 4 3e-03	217 <mark>Bi</mark> 1 <u>1</u> e-02	218 <mark>Bi</mark> 2.9e-02	<mark>²¹⁹Ві</mark> 6.3е-02	220 <mark>Bi</mark> 1.5e-01	221 <mark>Bi</mark> 2.2e-01	222 <mark>Bi</mark> 4.1e-01	223 <mark>Bi</mark> 3.6e-01	224 <mark>Bi</mark> 4.6e-01	225 <mark>Bi</mark> 4.4e-01	226 <mark>Bi</mark> 2.3e-01	227 <mark>Bi</mark> 1.0e-01	228Bi 2.8e-02	229 <mark>B</mark> i 4.2e-03	1e-01 3e-02 1e-02
Abrasion-Fission 238U (345.0 MeV/u) + Be UISE++ Abrasion-Ablation calculations to estim Calculate * Ca	ate excitation ener	gy regions-		Pb -03	217Pb 1.1e-02	218Pb 2.5e-02	219 <mark>Pb</mark> 5.1e-02	220Pb 7.2e-02	221Pb 1.3e-01	222 Pb 1.7e-01	223Pb 1.4e-01	224Pb 1.3e-01	225Pb 6.7e-02	226Pb 3.7e-02	227 Pb 7.3e-03	228Pb 1.3e-03	3e-03 1e-03
Preigy region definitions Excitation energy region LOW MIDDLE HIGH Drosse a primary reaction C C C Drosse a primary reaction C C	ission wit	th ligi нібн	EM fission	T I +-03	216TI 5.9e-03	217TI 8.0e-03	218TI 1.9e-02	219 TI 3.0e-02	220TI 2.9e-02	221 <mark>TI</mark> 3.9e-02	222TI 2.8e-02	223TI 2.5e-02	224TI 1.3e-02	225TI 7.3e-03	226TI 1.4e-03	227 TI 2.5e-04	1e-04 3e-05
Periodin damatistant acculations Provide acculation Provide acculations Provide acculations Provide accul	** use in code	use in code		Hg	²¹⁵ Hg	²¹⁶ Hg	²¹⁷ Hg	²¹⁸ Hg	²¹⁹ Hg	²²⁰ Hg	²²¹ Hg	²²² Hg	²²³ Hg	²²⁴ Hg	²²⁵ Hg	²²⁶ Hg	3e-06 1e-06
Cross section (mb) 1e-1 601.8 498.8 Restore previous settings Cross sections sign (mb) 1090.7				- <u>84</u>	1005 OT	136	3	138	Neutro	140 ns (N)		142		144		146	î
Load Fission, Evaporation, Excit.Energy Region entry and the control of the																	
Evaporation settings S. Piot determine low 2 (element number) where Abrasion-Ablation stops. Zitop = coef "Zbeam responsible for production . Low-excitation-Abras																	
✓ OK X Cancel ? Help of High Z (Z>55)																	

No attenuator, I=10-15 pnA

161**P**r

PID plot for 161Pr Setting

Accumulation of runs: 1023-1037, 1043-1092 Total : 54.8 hours

PRELIMINARY for 2014

New Isotope : 13 nuclides

BigRIPS group courtesy

3.3 Competition between A-Fission & P-Fragmentation

Abrasion-Fission

vs. Projectile Fragmentation (Abrasion-Ablation)

MICHIGAN STATE

LIS

RSITY

E ++

Projectile fragmentation : Z=76 fragments

We need primary cross sections with thin target!! E9063 @ MSU

Comparison LISE++ AF & AA cross sections

4. Projectile Fragmentation

Projectile fragmentation

Projectile fragmentation Fragment velocity / Momentum distribution) Cross section, Excitation energy and etc / 82Se(140.0 Me) Cross Sections 4 - EPAX 3.01: K.Summerer,Phys.Rev.C86(2012)014601 0 - Abrasion/Ablation v.6.4 1 - EPAX 1.00: K.Summerer et al.,Phys.Rev.C42(1990)2546 2 - EPAX 2.15: K.Summerer et al.,Phys.Rev.C61(2000)034607 3 - EPAX 3.01: K.Summerer,Phys.Rev.C86(2012)014601

References:

- K. Summerer, B. Blank, Phys. Rev. C 61 (2000) 034607;
 K. Summerer, Phys. Rev. C 86 (2012) 014601
- [2] O. Tarasov, D. Bazin, Nucl. Instr. and Meth. B 204 (2003) 74.
- [3] J.-J. Gaimard, K.-H. Schmidt, Nucl. Phys. A 531 (1991) 709.
- [4] J. Benlliure , et al. Nucl. Phys. A 660 (1999) 87.
- [5] Yariv and Fraenkel, Phys. Rev. C20 (1979) 2227.

□ Cross sections for projectile fragmentation 📑

- EPAX parametrizations [1] based on fragmentation data
- LISE⁺⁺ Abrasion-Ablation model (analytical) [2]
- Possibility to input cross sections manually via file
- □ ABRABLA : Abrasion-Ablation Monte Carlo [3]
- COFRA : a simplified, analytical version of ABRABLA, which only considers neutron evaporation from the pre-fragments formed in the abrasion stage [4].
- □ Intra-nuclear Cascade Models, e.g. ISABEL [5]

⁴⁸Ca(140MeV/u) + W,Be

A simple systematic framework was found to describe the production cross sections based on thermal evaporation from excited prefragments that allows extrapolation to other weak reaction products.

O.T. et al., Phys.Rev. C 75, 064613 (2007)

Compilation with data from *M.* Mocko et al., *Phys. Rev.* C 74, 054612 (2006)

$$Q_{\rm g} = ME(Z = 20, A = 48) - ME(Z, A)$$

OT et sal., Phys.Rev.Lett. 102, 142501 (2009) :

OT et sal., Phys.Rev.C. 80, 034609 (2009) :

620, 578-584 (2010) :

This region (around ⁶²Ti) was previously predicted to be a new island of inversion *B. A. Brown Prog. Part. Nucl. Phys.* 47 (2001) 517

New isotopes, Evidence for a Change in the Nuclear Mass Surface Set-up, cross sections, momentum distributions A new approach to measure momentum distributions

OT et sal., NIM A

⁸²Se (139 MeV/u) \rightarrow new isotopes, CS, momentum distributions Q_{q} systematics \rightarrow Confirmation of Calcium anomaly

MICHIGAN STATE

2013 : Calcium anomaly as shell effects close to drip line

Selected for a Viewpoint in *Physics*

PHYSICAL REVIEW C 87, 054612 (2013)

Ş

Production cross sections from ⁸²Se fragmentation as indications of shell effects in neutron-rich isotopes close to the drip-line

O. B. T. ^{1,*} M. Portillo,² D. J. Morrissey,^{1,3} A. M. Amthor,² L. Bandura,² T. Baumann,¹ D. Bazin,¹ J. S. Berryman,¹ B. A. Brown,^{1,4} G. Chubarian,⁵ N. Fukuda,⁶ A. Gade,^{1,4} T. N. Ginter,¹ M. Hausmann,² N. Inabe,⁶ T. Kubo,⁶ J. Pereira,¹ B. M. Sherrill,^{1,4} A. Stolz,¹ C. Sumithrarachichi,¹ M. Thoennessen,^{1,4} and D. Weisshaar¹
¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
²Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
³Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
⁴Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
⁶RIKEN Nishina Center, RIKEN, Wako-shi, Saitama 351-0198, Japan

The measured cross sections were best reproduced by using masses derived from the full pf shell-model space with the GXPF1B5 [1] effective interaction modified to a recent ⁵⁴Ca $E_x(^{2+}_1)$ measurement [2].

The "Calcium anomaly" can be explained with a shell model that predicts a subshell closure at N = 34 around Z = 20.

[1] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Eur. Phys. J. A 25, Suppl. 1, 499 (2005)
 [2] D. Steppenbeck et al., Nature 502, 207 (2013)

S NSCL

Cross section (mb)

\mathbf{Q}_{g} systematics, Two-neutron separation energy

Experimental masses:

A.T. Gallant et al., Phys. Rev. Lett. 109, 032506 (2012) F. Wienholtz et al., Nature 498 (2013) 346

MICHIGAN STATE

Global trends of cross sections

FIG. Production cross section versus atomic number (Z) for fragments from reaction of ⁸²Se with beryllium targets. Lines are connected according to constant N - 2Z, while labels represent the neutron number.

FIG. Two-neutron separation energy S_{2n} versus neutron number (N) for elements $12 \leq Z \leq 22$. Values are calculated using results from the GXPF1B5 model. Labels in the lines show atomic numbers of nuclei.

LISE⁺⁺ Abrasion-Ablation model

Different mass models as

- HFB9,
- HBF17,
- KTYU
- TUYY
- AME2003
- AME2012
- GXPF1B,
- GXPF1B5

were used in LISE⁺⁺ Abrasion-Ablation excitation energy minimization procedures to compare with the experimental data

Abrasion-Ablation: Excitation energy

The best result to describe the experimental data of isotopes of elements 16<Z<24 has been obtained with GXPF1B5 (+ LDM0) at $E^*=15.0 (\sigma=9.15)$ MeV

⁴⁰Ar beam: <E>= 13.3 MeV NPA 531 ,709 (1991)

²³⁸U beam: <E>= 27 MeV (K.H.S.)

increase decrease

decreased [increased]

- Separation energy changes influence drastically of cross section close to the drip-line (this ⁶⁰Ca example)
- 2. Residue cross section depends how <u>much bound</u> <u>are preceding</u> <u>isotopes</u>
- Deviations in cross sections are not just indicators for local low separation energies (as ³¹Ne, ³⁷Mg), but also might provide information about shell effects close to the neutron drip-line

LISE++ Abrasion-Ablation: Input channels

- 1. Largest incoming contribution to the Total excitation function is 1n-channel
- 2. Largest incoming contribution to the Residue cross section

Oxygen "anomaly"

NSCL/MSU

⁴⁸Ca (140 MeV/u) + Ta

O.T. et al., Phys.Rev. C 75, 064613 (2007)

Oxygen isotopes are more particle bound

Protons (Z)

Oxygen isotopes are more particle bound, but less produced !?

						,	Г _{1/2} (se	c)
	46 S	47 S	48 S		50 S		52 S	
	5.0e-02	5.2e-03	1.1e-02		4.4e-03		2.2e-03	
15	43 P	44 P	45 P	46 P	47 P		49 p	
	3.6e-02	1.8e-02	1.3e-02	4.0e-03	1.3e-02		2.2e-03	
	⁴⁰ Si	⁴¹ Si	⁴² Si	⁴³ Si	⁴⁴ Si		⁴⁶ Si	
	3.3e-02	2.0e-02	1.3e-02	1.0e-02	1.4e-02		1.9e-02	
13	³⁷ AI	³⁸ AI	³⁹ A1	⁴⁰ AI	⁴¹ AI	⁴² AI	⁴³ AI	
	1.1e-02	7.6e-03	7.6e-03	3.7e-03	3.6e-03	1.4e-03	9.9e-04	
	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg		⁴⁰ Mg	
	2.0e-02	7.0e-02	3.9e-03	8.0e-03	8.7e-03		1.3e-02	
11	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na		³⁷ Na	
	1.7e-02	1.3e-02	8.2e-03	5.5e-03	1.5e-03		1.7e-03	
	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne		³⁴ Ne	
9	1.9e-02	1.5e-02	7.3e-03	3.4e-03	3.5e-03		4.3e-03	
	25F	26 F	2/F		29 F		31F	
	8.0e-02	9.7e-03	4.9e-03		2.5e-03		1.9e-03	
	220	230	24 0					
	191	201	21N	22N	2311			
7	3 4e-01	1 4e-01	8 3e-02	2 4e-02	1 4e-02			
	160	170	180	190	200		220	
	7.5e-01	1.9e-01	9.2e-02	4.6e-02	1.6e-02		6.2e-03	
-	13B	14B	15B		17B		19B	
5	1.7e-02	1.3e-02	9.9e-03		5.1e-03		2.9e-03	
	¹⁰ Be	¹¹ Be	¹² Be		¹⁴ Be			
	4.8e+13	1.4e+01	2.2e-02		4.3e-03			
3	⁷ Li	⁸ Li	⁹ Li		11Li			
Ŭ	92.4%	8.4e-01	1.8e-01		8.8e-03			
	⁴ He		⁶ He		⁸ He			
	100%		8.1e-01		1.2e-01			
1	1H	² H	³ H					
I	-2	-1	0	1	2	3	4	
				Line (N-2	2 Z)			

- No particle bound preceding isotopes of the same element, So "excitation energy train" cannot be slow down
- Absence of excited bound states?

More probable prefragments are Ti-isotopes (dZ=2)

Final Evaporation Residue cross-sections (LisFus)

Excit.Energy: 149.0-207.0 MeV; Fus.CS: 0.0 mb; Fus.Barrier: 10.82 fm; h_omega = 2.0 MeV NP=64; SE"DB1+Cal0" Density:"auto" GeomCor:"On" Tunlg:"auto" ^{Fis}Bar=#1 Bar^{Fac}=1.00 Modes=^{1010 1010 010}

Excitation functions A=48-68 ($E_0^* = 15 \text{ MeV}$)

⁸²Se + Be -> ^{**}Ca

Excitation functions A=48-68 ($E_0^* = 15 \text{ MeV}$)

Zoom

De-excitation process & excitation energy of daughter nucleus:

Excitation energy shift

 $\Sigma S_n(A,Z) = BE_{max}(Z) - BE(A,Z)$

Residue Cross Section of neutron-rich isotopes

 $\sigma (Z,N) = f [dBE(Z,N), S_n(Z,N)]$

S_n(Z,N) minimum separation energy

dBE(Z,N) difference between the maximum biding energy for isotopes (Z) and binding energy of the nucleus (Z,N)

1. $\sigma(Z,N) \sim [dBE(Z,N)+a_1)]^{a_2} * S_n(Z,N)$

If $S_n(Z,N) \le 0$, Then $\sigma(Z,N) = 0$, whereas Q_q or BE/A systematics show unbound nuclei

Or Using dBE(Z,N-1) = dBE(Z,N) + $S_n(Z,N)$,

2. σ (Z,N) ~ dBE(Z,N-1)

d_BEsn Cross Section Systematic vs. Experiment

MICHIGAN STATE

*d*_BE_{sn} Cross Section Systematic with different Mass Models vs. ⁸²Se Experimental Data

*d*BE distributions : ME value variations

dBEsn systematics

Α

- Deduced, not assumed
- Start energy point
- Unbound nuclei are out of the systematics
- Can be used for other reaction mechanisms, where neutron rich nuclei are produced after emission large number of neutrons
- No parameters (for dBEsn), the same slope?
- No needs for any odd-even corrections and so on

- Unknown isotopes cross section predictions (mass model dependent) using experimental CS data
- Indication for particle stability of nuclei from agreement experimental CS data with theoretical models
- Works only for regions where neutron de-excitation dominates (de-excitation neutron train)
- In the case of very small S_n the dBE-systematics has to be used instead dBEsn
- Secondary reactions vs. dBE systematics (next slide)

4.1 Anomaly observation

"Calcium anomaly" observation

⁸²Se (139 MeV/u) + Be

Phys. Rev. C 87, 054612 (2013)

Log10 (Experimental Cross Sections / EPAX 3.15)

log10(CS/E	PAX3)																																
Z/N	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
33																																		0.06
32																																	-0.54	-0.13
31																														-0.09	-0.52	-0.4	-0.31	-0.36
30																				-0.59	-0.37	-0.28	-0.25	0.2					-0.4	-0 72	-0.56	.05	-0.68	-0.67
29																			-0.38	-0.17	-0.11	-0.02					-0.46	-0.59	-0.69	-0.66	-0.64	-0. 5	-0.79	-0.6
28																		-0.2	-0.1	0.01	0.06	0.18				-0.52	-0.79	-0.62	-0.71	-0.87	-0.74	-0.: 2	-0.67	-1.0
27															-0.38	-0.33	-0.15	-0.08	-0.06	0.11	0.2			-0.54	-0.67	-0.57	-0.53	-0.4	-0.74	-0.34	-0.34	-0.: 1	-0.88	-0.92
26														-0.12	-0.15	-0.06	-0.15	-0.06	0.02	0.13			-0.73	-0.78	-0.56	-0.46	-0.4	-0.32	-0.27	-0.13	-0.44	-0.	-0.69	-0.7
25													-0.17	-0.07	-0.09	-0.14	-0.15	-0.02	0.04	0.1	-0.59	-0.63	-0.71	-0.44	-0.43	-0.2	-0.15	-0.03	0.06	0.03	-0.08	-0.01	-0.41	
24												-0.07	0.01	-0.05	-0.19	-0.14	-0.19	-0.07	-0.32	-0.58	-0.72	-0.54	-0.52	-0.3	-0.29	-0.02	0.07	0.11	0.01	0.29	0.34	0.67		
23										-0.05	-0.05	0.05	-0.06	-0.15	-0.22	-0.23	-0.21	-0.49	-0.75	-0.53	-0.51	-0.33	-0.21	0.11	0.15	0.34	0.26	0.68	0.5	1.02				
22										0.11	0.09	-0.05	-0.16	-0.21	-0.37	-0.45	-0.71	-0.66	-0.64	-0.56	-0.43	-0.12	-0.05	0.04	0.06	0.43	0.43	0.73						
21								0.06	0.13	0.11	-0.09	-0 17	-0.27	-0.39	-0.63	-0.61	-0.63	-0.6	-0.65	-0.3	-0.32	-0.11	-0.28	0.3	0.29	0.89								
20							0.17	0.27	0.12	-0.06	-0.23	3	-0.47	-0.64	-0.78	-0.7	-0.8	-0.62	-0.98	-0.86	-1.05	-0.53	-0.32	0.29										
19						-0.3	0.05	0.09	-0.13	-0.23	-0.37	-0 46	-0.4	-0.29	-0.43	-0.23	-0.16	-0.05	-0.47	-0.28	-0.44	0.05												
18						-0.16	-0.15	-0.22	-0.33	-0.43	-0.61	-0.25	-0.27	-0.17	-0.23	-0.05	-0.24	-0.08	-0.41	0.11														
17				-0.62	-0.37	-0.26	-0.35	-0.37	-0.44	-0.51	-0.02	0.02	0.17	0.33	0.21	0.51	0.31	0.55	0.56															
16			-0.57	-0.3	-0.32	-0.32	-0.44	-0.46	-0.27	-0.02	0	0.26	0.2	0.47	0.46	0.52	0.44	1.32																
15		-0.45	-0.33	-0.24	-0.36	-0.4	-0.48	-0.18	0.05	0.39	0.4	0.72	0.67	1.07	0.87	0.79																		
14	-0.19	0	-0.19	-0.28		-0.42	-0.42	0.07	0.16	0.54	0.72	0.99	0.88	0.9																				

What is Q_q systematics? Just tendency indicator

In Q_{gg} systematics "this" neutron is compensated by conjugated products

Your version (tendency, law) is correct if you are getting a LINE!

4.2 Projectile fragmentation: Dissipation contribution

2004 3-	step projec	tile fragmen	tation mod	lel 3
1 Abrasion Remova (statistic	ll of the part "a" cs)	Gaussian	$\psi(p_{pf}) = \frac{1}{\sqrt{2\pi} \sigma_{pf}} ex$	$\exp\left(\frac{-\left(p_{pf} - p_{0pf}\right)^2}{2\sigma_{pf}^2}\right)$
2 Friction - los Transfo internal Exchan	ss of kinetic energy rmation into the degrees of freedom ge of nucleons	Exponential . attenuation	$\phi(p_1, p_2) = \frac{1}{\tau} \exp(\frac{1}{\tau})$	$\exp\left(-\frac{p_2-p_1}{\tau}\right)$
3 Ablation light nu gamma-	clei emission, emission	Broadening	velocity pea does no	k maximum ot shift
$\hat{v}(p) = \phi \otimes \psi \cong \exp(i\theta)$	$\left(\frac{p}{\tau}\right) \cdot \left[1 - ferr\left(\frac{p-p}{\tau}\right)\right]$	$\frac{p_0 + \frac{\sigma_{pf}^2}{\tau} - s \cdot \tau}{\sqrt{2} \sigma_{pf}} \right]$	Where $\tau = coef \cdot \sqrt{A}$, $\sigma_{pf}^2 = \beta \sigma_0^2 \frac{A_{PF}}{A}$	$\overline{P_{F} \cdot E_{S}} / \beta$, and $A_{P} - A_{PF})$ $A_{P} - 1$
E _S is the	energy spent to split	the projectile (mass differ	ence, surface energy	excess)

Abrasion-Friction-Ablation

What do we know from experiments?

- Decreasing the projectile velocity → increase of production cross-section of neutron-rich isotopes
- Increasing target mass → increase of production cross-section of neutronrich isotopes
- Low Exponential tail in momentum distribution is due to dissipative processes

Why do cross-sections increase?

From the AA formalism: Increasing excitation low-energy tail.

Broadening or/and shift of excitation energy distribution take place due to **friction?**

If assume dissipation processes it is possible to answer on preceding questions:

- 1. Dissipation Time is increasing
- 2. Dissipation Time and Touching Area are increasing due to target size

Projectile fragmentation & Transfer reactions

5. Secondary reactions in target

Secondary (multi-step) reactions in target

Options

Preferences

Production Mechanism Prefragment Search and Evaporation options Excitation energy of prefragment Fission Barrier User Cross Sections User Cross Sections from File

Options of Fragment Production in Material (wedge)

Secondary Reactions in target

Isotopes

Applied for thick targets

- In this process, the projectile undergoes a series of successive reactions until the fragment of interest is produced
- □ For the second and next reactions LISE⁺⁺ always assumes a projectile fragmentation and <u>uses the</u> <u>EPAX parameterizations</u> to speed up calculations

Parent nuclei: multistep production probability 82 Se (140.0 MeV/u) + Be (443.61 mg/cm²) -> 64 Ti

Search for the A=3Z+6 nuclei: 33F, 36Ne, 39Na \rightarrow Determination of existence/non-existence, Neutron drip-line search

Presented by T. Kubo at NSCL User Meeting in Aug.

Search for the A=3Z+6 nuclei: ³³F, ³⁶Ne, ³⁹Na, (⁴²Mg) : determination of existence/nonexistence using an intense ⁴⁸Ca beam at RIBF

Oleg Tarasov et al.: Phys. Rev. C75 (2007) 064613 ⁴⁴Si **T. Baumann et al.: Nature 449 (2007)1022** ⁴⁰Mg and ^{42,43}Al

⁴⁸Ca 400pnA, 2.5 days irradiation

Be 30 mm, D1 8.766 Tm, △P/P=±3%, F1 degrader 2 mm, F2 ±2 mm

With/without 2nd → with/without secondary reaction effects in the target

	Yie	ld during 2.5	ō days with	400pnA(Counts/2.5days)					
Isotopes		EPAX2.15		EPAX3.01					
	with 2nd	without 2nd	(with/without)	with 2nd	without 2nd	(with/without)			
29F	1.7E+06	8.6E+05	2.0	8.6E+04	2.8E+04	3.1			
31F	1.5E+05	2.9E+04	5.1	2.1E+03	2.8E+02	7.5			
33F	2.9E+03	1.1E+02	27.0	6.7E+00	2.2E-01	30.0			
31Ne	1.6E+04	8.6E+03	1.9	1.2E+03	4.3E+02	2.8			
32Ne	4.3E+05	1.6E+05	2.7	1.9E+04	4.7E+03	4.1			
34Ne	1.2E+05	1.4E+04	8.6	1.3E+03	1.1E+02	11.4			
36Ne	3.8E+03	7.3E+01	52.4	6.4E+00	1.2E-01	51.4			
35Na	1.1E+04	2.9E+03	3.6	4.0E+02	7.8E+01	5.1			
37Na	9.8E+04	7.3E+03	13.6	8.5E+02	5.0E+01	16.9			
39Na	4.0E+03	7.4E+01	53.5	5.7E+00	1.1E-01	52.4			

Effect of Secondary reaction

Secondary reactions

The RI which produced from target react with target again and generate different RI. (Example) $48Ca \rightarrow 37Na \rightarrow 36Ne$

If the target thickness becomes thicker, this process can not be ignored.

The first-step reaction of 37Na to 36Ne is easy to produce with stable. The yield of $48Ca \rightarrow 37Na \rightarrow 36Ne$ can not be ignored because the cross section of the $37Na \rightarrow 36Ne(1p removal)$ is large.

Enlarge the above chart

We got ³⁷Na almost one order more due to secondary reactions!

MICHIGAN STATE UNIVERSITY LISE++

Recent proposals: several settings (different target thickness) have to be done to study secondary reactions. It's possible only in RIKEN (energy + intensity)...

Incoming experiment : 60Ca & secondary reactions

 ⁷⁰Zn (345 MeV/u)+Be RIKEN dBE-systematics can be important tool to study secondary reactions!!

6. Summary

Summary for reaction mechanism models to

produce rare beams

⁴⁸Ca, ⁷⁰Zn (345 MeV/u)+Be
Fair reproduction? Should be and will be checked
What model to use for the secondary step? EPAX2, EPAX3 or other?

MICHIGAN STATE

Thanks to collaborators from MSU, RIKEN, GANIL, JINR, GSI, and many other labs.

Thank you for your attention!

Thank for using ^(even if it will be in future) the LISE⁺⁺ code! We are doing all possible from us based on latest scientific approaches and your requests!

Thank you for
choosing our
company!ComfortWe appreciate
your businessQualityLarge Variety
of destinations

It is evidently a joke for this community , but ...some utilities, and it 's a good tool for students

0

Go White, Go Green!!!

5 Michigan State Spartans

9/5 1:00 AM CEST

THIS SATURDAY EARLY MORNING

Western Michigan Broncos

Go Spartans!!! Beat these Broncos!!! ③

M	IIC	Ή	11(GA	١N	S	T,	AT	Ē
U	Ν	Т	۷	E	R	s	I	Т	Y
Т		т			τ				
14		ł		9		2			

#5 Michigan State at Western Michigan -								
	POINT							
BETONLINE.ag	-17.5 +17.5							
5Dimes.eu	-18 +18							
SportsBetting.ag	-17.5 +17.5							
BOVADA								
Fantasy911.com	-17.5 +17.5							

Go Spartans!!! Beat these Broncos!!! ©