

\Box Search for new isotopes

- **The limits of nuclear stability provide a key benchmark of nuclear models**
- **The context of astrophysics**
	- *Understanding the r-process abundance patterns of elements*

Q Production mechanism

- **Production cross sections, Momentum distributions, Reaction choice**
- **Secondary beam intensities. Planning new experiments, set-ups (FRIB, RIBF, FAIR)**

\Box Nuclear structure

Changes in the structure of neutron-rich nuclei

- *Region around ³¹Na is now known as the "island of inversion"*
- *Deformation around neutron number N = 40 in Fe and Cr nuclei*
- **Shell closures at** *N***=32 and** *N***=34**
	- *Masses of exotic calcium isotopes pin down nuclear forces (53,54Ca)* F. Wienholtz et al., Nature 498 (2013) 346
	- **E**vidence for a new nuclear 'magic number' from the level structure of 54 Ca D. Steppenbeck et al., Nature 502 (2013) 207

These measurements of the $Ex(2⁺₁)$ in ⁵⁴Ca at RIKEN found that the experimental value is 0.5 MeV smaller than the prediction of the full *pf* shell-model space with the GXPF1B effective interaction.

GXPF1B: Y. Utsuno, T. Otsuka, B. A. Brown, M. Honma, T. Mizusaki, and N. Shimizu, PRC 86, 051301(R) (2012) ; GXPF1B5 – modified GXPF1B for 0.5 MeV shift

Production of new isotopes → Two stage separation Production cross sections → Q^g - systematics

O.T. et al., Phys.Rev. C 75, 064613 (2007)

$$
Q_{\rm g} = ME(Z = 20, A = 48) - ME(Z, A)
$$

EXON 2009 :

⁷⁶Ge (130 MeV/u) → new isotopes, CS, momentum distributions Q^g systematics → Possible new island of inversion ?

Enhanced cross sections might be the result of increased binding

This region (around 62 Ti) was previously predicted to be a new island of inversion *B. A. Brown Prog. Part. Nucl. Phys. 47 (2001) 517*

Phys.Rev.Lett. 102, 142501 (2009) : New isotopes, Evidence for a Change in the Nuclear Mass Surface Phys.Rev.C. 80, 034609 (2009) : Set-up, cross sections, momentum distributions NIM A 620, 578-584 (2010) : A new approach to measure momentum distributions

Confirmation of the Calcium anomaly…. Without explanation

2013 : Calcium anomaly as shell effects close to drip line

 \triangleright Selected for a Viewpoint in *Physics*

PHYSICAL REVIEW C 87, 054612 (2013)

ထွ

Production cross sections from ⁸²Se fragmentation as indications of shell effects in neutron-rich isotopes close to the drip-line

O. B. T., ^{1,*} M. Portillo,² D. J. Morrissey,^{1,3} A. M. Amthor,² L. Bandura,² T. Baumann,¹ D. Bazin,¹ J. S. Berryman,¹ B. A. Brown, ^{1,4} G. Chubarian, ⁵ N. Fukuda, ⁶ A. Gade, ^{1,4} T. N. Ginter, ¹ M. Hausmann, ² N. Inabe, ⁶ T. Kubo, ⁶ J. Pereira, ¹ B. M. Sherrill,^{1,4} A. Stolz,¹ C. Sumithrarachichi,¹ M. Thoennessen,^{1,4} and D. Weisshaar¹ ¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA 2 Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA ³Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA ⁴Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ⁵Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA ⁶RIKEN Nishina Center, RIKEN, Wako-shi, Saitama 351-0198, Japan

The measured cross sections were best reproduced by using masses derived from the full *pf* shell-model space with the GXPF1B5 [1] effective interaction modified to a recent ^{54}Ca $E_x(^{2+}_1$) measurement [2].

The "Calcium anomaly" can be explained with a shell model that predicts a subshell closure at $N = 34$ around $Z = 20$.

[1] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Eur. Phys. J. A 25, Suppl. 1, 499 (2005) [2] D. Steppenbeck et al., Nature 502, 207 (2013)

S
NSCL

Q*g* **systematics, Two-neutron separation energy**

Experimental masses:

O.Tarasov@exon2014.ru 7 F. Wienholtz et al., Nature 498 (2013) 346A.T. Gallant et al., Phys. Rev. Lett. 109, 032506 (2012)

Global trends of cross sections

FIG. Production cross section versus atomic number (Z) for fragments from reaction of ⁸²Se with beryllium targets. Lines are connected according to constant $N-2Z$, while labels represent the neutron number.

Two-neutron separation energy S_{2n} versus neutron FIG. number (N) for elements $12 \le Z \le 22$. Values are calculated using results from the GXPF1B5 model. Labels in the lines show atomic numbers of nuclei.

LISE++ Abrasion-Ablation model

Abrasion-Ablation: Excitation energy

MICHIGAN STATE $R S I T Y$ $S E_{++}$

The best result to describe the experimental data of isotopes of elements 16<Z<24 has been obtained with GXPF1B5 (+ LDM0) at E^* =15.0 (σ =9.15) MeV

GSI:

⁴⁰Ar beam: <E>= 13.3 MeV NPA 531 ,709 (1991)

²³⁸U beam: <E>= 27 MeV (K.H.S.)

 82 Se + Be -> "Ca

Let's increase (decrease) ⁶⁰Ca and heavier isotopes mass excesses by 2 MeV

(or decreased [increased] neutron separation energies)

- 1. Separation energy changes influence drastically of cross section close to the drip-line (this ⁶⁰Ca example)
- **2. Residue cross section depends how much bound are preceding isotopes**
- 3. Deviations in cross sections are not just indicators for local low separation energies (as ³¹Ne, ³⁷Mg), but also might provide information about shell effects close to the neutron drip-line

Oxygen "anomaly"

?

O.T. et al., Phys.Rev. C 75, 064613 (2007)

Oxygen isotopes are more particle bound Oxygen isotopes are less produced

GANIL ³⁶S (75 MeV/u) + Be 36° S + Be *O.T., Thesis 1999, Phys.Lett. B 409, 64-70 (1997)* 10° $10¹$ Cross Section, mb 10^{-2} 24 10^{-3} 21 10^{-4} $N-2Z = -8$ $-N-2Z = -7$ $-N-2Z = -1$ $-N-27=$ $N-2Z=$ 10^{-5} 92 $-N-2Z = -3$ $- N-2Z = -2$ 27 $-N-2Z = -1$ $-N-2Z=0$ $N-2Z=1$ 10^{-6} т $\overline{5}$ 12 13 $\boldsymbol{6}$ $\overline{7}$ $\bf8$ 11 $\overline{4}$ 9 Z

Oxygen isotopes are more particle bound, but less produced !?

- No particle bound preceding isotopes of the same element, So "excitation energy train" cannot be slow down
- Absence of excited bound states?

MICHIGAN STATE

RSITY Е

 $V E$

 \overline{U} N $\overline{1}$

- □ The LISE⁺⁺ AA model is initially based on the version of J.-J.Gaimard and K.H.Schmidt, NPA531 (1991) 709
- \Box The LISE⁺⁺ AA model is analytical, that allows to calculate low cross sections of very exotic nuclei
- \Box The Abrasion-Ablation approach meets three principal difficulties
	- *a. Determination of Excitation energy parameters (models) for each reaction*
	- *b. Plenty of other parameters*
	- *c. Suggesting negligible contribution of dissipation processes during abrasion (it can be true at high energies with light targets)*
- \Box Four excitation energy models are implanted in the code
- \Box The Ablation step (Evaporation cascade) uses a mass table to obtain separation energies

LISE++ Abrasion-Ablation: Input channels

 82 Se

 $81As$

 80_{Ge}

 79 Ga

- 1. Largest incoming contribution to the Total excitation function is 1n-channel
- 2. Largest incoming contribution to the Residue cross section is 1n-channel

Protons (Z)

MICHIGAN STATE $U N$ **VERSITY** $L I S E++$

17

介

8e-01

 $1e-01$

2e-02

8e-09

1e-09

3e-11

 $1e-13$

Current mode: Initial $CS \geq \lceil S \rceil$ residue $\lceil S \rceil$ [Sr total] ABRASION-ABLATION - 82Se + Be

Excit. Energy Method:< 2 >; < E*>:15.0*dA MeV Sigma:9.15; CoefThermalization=5.00e-22MeV.s DB1="GXPF1B" NP=64; SE:"DB1+Cal0" Density:"auto" GeomCor:"On" Tunig:"auto" FisBar=#1 BarFac=1.00 Modes=1010 1010 010

MICHIGAN STATE s E_{++}

⁸²Se + Be ⁷⁶Ge + Be

More probable prefragments are Ti-isotopes (dZ=2)

Final Evaporation Residue cross-sections (LisFus)

EVAPORATION - Compound nucleus 68Ti

Excit Energy: 149.0-207.0 MeV; Fus.CS: 0.0 mb; Fus.Barrier: 10.82 fm; h_omega = 2.0 MeV NP=64; SE"DB1+Cal0" Density:"auto" GeomCor:"On" Tunig:"auto" FisBar=#1 BarFac=1.00 Modes=1010 1010 010

Excitation functions $A=48-68$ ($E^*_{0}=15$ MeV)

MICHIGAN STATE
UNIVERSITY E_{++} S.

 82 Se + Be \rightarrow 8 Ca

Excitation functions $A=48-68$ ($E^*_{0}=15$ MeV)

Zoom

 $10³$

 82 Se + Be \rightarrow 58 Ca

De-excitation process & excitation energy of daughter nucleus:

Excitation energy shift

$\Sigma S_n(A,Z) = BE_{max}(Z) - BE(A,Z)$

Residue Cross Section of neutron-rich isotopes

 σ (Z,N) = f [dBE(Z,N), $S_n(Z,N)$]

 $S_n(Z,N)$ minimum separation energy

dBE(Z,N) difference between the maximum biding energy for isotopes (Z) and binding energy of the nucleus (Z,N)

1. σ (Z,N) ~ [dBE(Z,N)+a₁)]^{a2} * S_n(Z,N)

If $S_n(Z,N) \leq 0$, Then $\sigma(Z,N) = 0$, whereas Q_a or BE/A systematics show unbound nuclei

Or Using $dBE(Z, N-1) = dBE(Z, N) + S_n(Z, N),$ 2. σ (Z,N) ~ dBE(Z,N+1)

dBE Cross Section Systematic vs. Experiment

dBE Cross Section Systematic with different Mass Models vs. ⁸²Se Experimental Data

MICHIGAN STATE UN R s $1TY$

"Calcium anomaly" observation

⁸²Se (139 MeV/u) + Be

Phys. Rev. C **87**, 054612 (2013)

Log10 (Experimental Cross Sections / EPAX 3.15)

In $Q_{\alpha\alpha}$ systematics "this" neutron is compensated by conjugated products

-
- 1. Even one registered event (non-zero production cross section) provides information for nucleus structure : particle bound or not
- 2. There are very low statistics, and spectroscopy experiments are difficult (or impossible) to perform, Systematic production cross sections can provide some indications about structure of observed isotopes, and even provide hints about structures of preceding non-observed isotopes
- 3. Even it is difficult to evaluate masses from AA analysis (one particular cross section kink, or depression for several isotopes), though production cross section analysis is powerful test of theoretical mass models
- 4. dBE-systematics advantages:
	- a. deduced, not assumed
	- b. start energy point
	- c. unbound nuclei are out of the systematics
	- d. can be used for other reaction mechanisms,
	- where neutron rich nuclei are produced after emission large number of neutrons
	- e. no parameters, the same slope?
	- f. no any odd-even corrections and so on.

- 1. What is proper expression (parameterization) for dBE-systematics?
- 2. Why slopes are similar for all elements?
- 3. Why is turnover point is always in the dBE-place (stability line?)?
- 4. What is contribution of dissipation at low energies or with heavy targets
- 5. Can Monte Carlo study of prefragment distribution and channels preceding to final residue explain the data? New experiments will be useful as well.

Discussions with Prof. D.J.Morrissey are very appreciated.