

Rare isotope beams production

using fusion-fission reactions

O.B.Tarasov,¹ O.Delaune,^{2,a} F.Farget,² A.M.Amthor,^{2,b} B.Bastin,² D.Bazin,¹ B.Blank,³ L.Caceres,² A.Chbihi,² B.Fernandez-Domnguez,⁴ S.Grevy,³ O.Kamalou,² S. Lukyanov,⁵ W.Mittig,^{1,6} D.J.Morrissey,^{1,7} J.Pereira,¹ L.Perrot,⁸ M.-G.Saint-Laurent,² H. Savajols,² B.M.Sherrill,^{1,6} C. Stodel,² J. C. Thomas,² A. C. Villari⁹

¹ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

² Grand Accélérateur National d'Ions Lourds, CEA/DSM-CNRS/IN2P3, F-14076 Caen, France

³ CENBG, UMR 5797 CNRS/IN2P3, Université Bordeaux 1, F-33175 Gradignan, France

⁴ Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain

⁵ FLNR, JINR, 141980 Dubna, Moscow region, Russian Federation

⁶ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

⁷ Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA

⁸ IPN Orsay, CNRS/IN2P3, F-91406 Orsay, France

⁹ Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA

^a present address: CEA DAM DIF, F-91297 Arpajon, France

^b present address: Department of Physics, Bucknell University, Lewisburg, PA 17837, USA

Heavy neutron-rich isotope beam production using fission reactions

- □ Nowadays, fission is widely used to produce rare neutron-rich nuclei.
 - * in-flight fission (abrasion-fission, Coulomb fission);
 - * spallation reactions (ISOL technique) at thick Uranium targets are used to produce such nuclei.
- □ Important issue of these both techniques is hardness to produce neutron-rich fragments with Z>55 due to small production abrasionfission cross sections.

Using fusion-fission reactions, the fissile nucleus becomes heavy than projectile (so in the previous example heavy than Uranium)

Inverse kinematics of low energy reactions?

- □ A recent VAMOS experiment to measure fission fragment yields from the reaction of ²³⁸U with ¹²C near the Coulomb barrier demonstrated the advantages of inverse kinematics to study production mechanisms [1], and to investigate fission fragments properties [2].
 - 1. M.Caamaño, et al., Phys. Rev. C 88, 024605 (2013)
 - 2. A.Shrivastava et al., Phys. Rev. C 80, 051305(R) (2009)

How to produce heavy fusion-fission beams with separators?

10/09/2014, DNP@Waikoloa.Hawaii

What beams we can expect from fusion-fission reactions?

A model[1] for fast calculations of fusion–fission fragment cross sections has been developed in LISE++[2] based on already existent analytical solutions: fusion–evaporation and fission fragment production models.

Main features of the model:

- Production cross-section of fragments
- Kinematics of reaction products
- Spectrometer tuning to the fragment of interest optimized on maximal yield (or on good purification)

Using fusion-fission beams:

- Several tens of new isotopes (in 2008) are expected to be produced in the region 55 < Z < 75 using a ²³⁸U beam with light targets according to the Fusion-Fission model
- Properties of these new nuclei allow to test nuclear models, in particular to understand the r-process abundance patterns of element around lead as well as nuclei properties approaching closed shell N=126 (you don't need to degrade)
- · And evidently reaction mechanism study

Open Questions:

- What is optimal conditions, for example the energy of primary beam, the target material, thickness and so on?
- How reliable are simulations? Intensities, purification?
- What are contributions from other reaction mechanisms?
- Separation, Identification, Resolution?

- [1] O. B. T. and A. C. C. Villari, NIM B 266 (2008) 4670-4673
- [2] O. B. T. and D. Bazin, NIM B 266, 4657 (2008). LISE++ website: http://lise.nscl.msu.edu.

A test experiment to show separation and identification of fusion-fission products was performed using the LISE3 fragment-separator at GANIL.

Experimental set-up

- A ²³⁸U beam at 24 MeV/u with a typical intensity of 10⁹ pps, was used to irradiate a series of beryllium targets and a carbon target.
- The beam was incident at an angle of 3° in order not to overwhelm the detectors with the beam charge states.
- Fragments were detected in a Silicon telescope at the end of the separator. Fission fragments produced by inverse kinematics are identified by ΔΕ-ΤΚΕ-Βρ-ΤοF method.
- Two MCP detectors (gallete 31 and gallete 62) were used to measure positions and times.
- Germanium γ-ray detectors were placed near the Si telescope to provide an independent verification of the isotope identification via isomer tagging.

238
U @ 24 A MeV + 9 Be -> 247 Cm E*= 150-200 MeV 238 U @ 24 A MeV + 12 C -> 250 Cf E*= 180-250 MeV

²³⁸U^{58+ → q+} (24 MeV/u) charge state distribution after ...

- What charge state model should be used for fragment transmission estimation?
- Based on sigma
 values and peak
 positions it is
 possible to conclude
 about reaching
 equilibrium thickness
- The best predictions are given for beam and fragments by
 A.Leon et al., AD &
 ND Tables 69 (1998)
 217

This work was done also at GANIL

10/09/2014, DNP@Waikoloa.Hawaii

Particle Identification

Gamma-ray spectrum observed in coincidence with ^{128}Te . The characteristic gamma lines of 314, 742 and 752 keV sign the decay of the isomeric state of $T_{\frac{1}{2}}=370~\mathrm{ns}$

Preliminary detectors calibration with the primary beam, Then particle identification has to be proved by gamma from know isomers

The atomic number is determined from the combination of energy loss (ΔE) and time-of-flight (TOF) values according to the Bethe formula:	$Z \approx \sqrt{\Delta E / \left(\frac{1}{\beta^2} \ln \left(\frac{5930}{1/\beta^2 - 1}\right) - 1\right)}$
The fragment mass can be extracted in atomic units from the relativistic formula, where TKE is calculated as a sum of the energy loss values in each of the detectors in a multilayer telescope stopping the products	$A = \frac{TKE}{931.5 \times (\gamma - 1)}$
The charge state of the ion evaluated from a relation based on the TKE, velocity and magnetic rigidity values:	$q = 3.33 \times 10^{-3} \frac{TKE \times \beta \gamma}{B \rho (\gamma - 1)}$

Transmission calculations

- The LISE⁺⁺ code has been used for transmission calculations
- A.Leon's charge state and F.Hubert 's energy loss models were used
- Data with 15 mg/cm² Be & C targets have been used in analysis
- In the analysis the targets have been divided on 5 slices, results have been summed.

It has been done because the LISE++ assumed reaction place in the middle of target

• A lot of important updates, improvements, as well including bugs fix were done during this analysis

Neutron excess and width of the isotopic fission fragments produced in reactions of ²³⁸U with light targets

Preliminary!!!

Preliminary!!!

238U Energy	24 AMeV	24 AMeV	1 AGeV	1 AGev
Target	Ве	С	d	р
<z></z>	48.01	45.75	43.54	44.93
d <z></z>	0.22	0.21	0.20	0.20
sig(Z)	6.03	6.40	7.44	7.00
d(sig(Z))	0.17	0.16	0.15	0.15

C & Be cases:

Two light targets (A=9 & 12) at the same beam energy, but why so different distributions?

Reaction characteristics: 238U beam on light targets

		247Cm			250Cf		
238U beam energy (MeV/u)	24	19	19-24	24	17	17-24	
Target	Be	Be		С	С		Dimension
Fusion barrier (Bass)	43.0			64.2			MeV
Center of ME	209.3	163.2		275.3	202.3		MeV
Excitation energy	202.4	156.3		251.4	178.4		MeV
Fission barrier vanishes at (from Sierk)	67	67		63	63		hbar
L_critical NRV)	71	71		81	81		hbar
L_grazing (from Wilcke)	76.2	66.5		100.7	84.3		hbar
Fusion L-grazing (PACE4)	77.0	67.5		101.8	82.0		hbar
L_max (from Wilcke)	100.2	88.4		132.1	112.6		hbar
L_minimum for Complete fusion	67	66.5		63	63		
Reaction Cross section (Lmax - Wilcke)	3468	3408	3438	3560	3211	3386	mb
Fusion cross section (Bass) - L-grazing	2194	2131	2163	2185	2013	2099	mb
Complete fusion	1634	2033	1833	832	1175	1004	mb
Fast-Fission (DIC - subsequent fission)	560	98	329	1353	838	1095	mb
Above L_grazing (QE)	1274	1277	<u>1276</u>	1375	1198	<u>1287</u>	mb
no quasi-fission for these target at these energies							l

- ❖ For ²³⁸U (24 MeV/u) with light targets CoulEx < 10 mb
- For ²³⁸U case: Fast Fission and Deep-Inelastic give High excitation subsequent fission (DIF)
- Low excitation energy fission (|∆A| ≤ 1) ~ 100-200 mb

Ζ

Reaction characteristics: 238U beam on light targets

		247Cm			250Cf		
238U beam energy (MeV/u)	24	19	19-24	24	17	17-24	
Target	Be	Be		С	С		Dimension
Fusion barrier (Bass)	43.0			64.2			MeV
Center of ME	209.3	163.2		275.3	202.3		MeV
Excitation energy	202.4	156.3		251.4	178.4		MeV
Fission barrier vanishes at (from Sierk)	67	67		63	63		hbar
L_critical NRV)	71	71		81	81		hbar
L_grazing (from Wilcke)	76.2	66.5		100.7	84.3		hbar
Fusion L-grazing (PACE4)	77.0	67.5		101.8	82.0		hbar
L_max (from Wilcke)	100.2	88.4		132.1	112.6		hbar
L_minimum for Complete fusion Min(L_fis=0, Lg	ráz) ₆₇	66.5		63	63		
Reaction Cross section (Lmax - Wilcke)	3468	3408	3438	3560	3211	3386	mb
Fusion cross section (Bass) - L-grazing	2194	2131	2163	2185	2013	2099	mb
Complete fusion	1634	2033 8	5% 1833	832	1175 4	<mark>8% 1004</mark>	mb
Fast-Fission (DIC - subsequent fission)	560	98	329	1353	838	1095	mb
Above L_grazing (QE)	1274	1277	<u>1276</u>	1375	1198	<u>1287</u>	mb
no quasi-fission for these target at these energies							

Fission mechanisms with different light targets at 21 MeV/u

Carbon target.. 50% split... Why?

This is due to difference of moments of inertia between C+U and Be+U just above where fission barrier go to zero

Fission mechanisms on light targets vs. energy

- 2. DIF & AF both high excitation energy fission; no deep inelastic component for AF, "geometrical" cut
- 3. FF & AF process can be calculated with LISE++

Conclusion

- <u>Fusion-Fission reaction products</u> produced by a ²³⁸U beam at 24 MeV/u on Be and C targets were measured in inverse kinematics by use of the LISE3 fragment separator.
- <u>The identification of fragments was done using the dE-TKE-Brho-ToF method</u>. Germanium gamma-detectors were placed in the focal plane near the Si stopping telescope to provide an independent <u>verification of the isotope identification via isomer tagging</u>.
- The experiment demonstrated excellent resolution, in *Z*, *A*, and *q*.
- The results demonstrate that a fragment separator can be used to produce radioactive beams using fusion-fission reactions in inverse kinematics, and further that in-flight fusion-fission can become a useful production method to identify new neutron-rich isotopes, investigate their properties and study production mechanisms. Mass, atomic number and charge-state distributions are reported for the two reactions.
- The comparison of the experimental atomic-number and mass distributions combined with the <u>analysis of the isotopic-distributions</u> properties show that between the ⁹Be and the ¹²C target, the reaction mechanism changes substantially, evolving from a complete fusion-fission reaction to incomplete fusion or fast fission.

Authors, Acknowledgments, Grants

O.B.T.¹ O.Delaune,² F.Farget,² A.M.Amthor,² B.Bastin,² D.Bazin,¹ B.Blank,³ L.Caceres,² A.Chbihi,² B.Fernandez-Domnguez,⁴ S.Grevy,³ O.Kamalou,² S. Lukyanov,⁵ W.Mittig,¹,⁶ D.J.Morrissey,¹,⁷ J.Pereira,¹ L.Perrot,³ M.-G.Saint-Laurent,² H. Savajols,² B.M.Sherrill,¹,⁶ C. Stodel,² J. C. Thomas,² A. C. Villari⁹

The authors would like to acknowledge to Dr.G.Knyazheva (FLNR/Dubna), Profs. A.Gade and Z.Kohley (NSCL/MSU) for fruitful discussions.

This work was supported by the US National Science Foundation under Grants No. PHY-06-06007, No. PHY-10-68217, and No.PHY-11-02511.

Thank you for your attention!

¹ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

² Grand Accélérateur National d'Ions Lourds, CEA/DSM-CNRS/IN2P3, F-14076 Caen, France

³ CENBG, UMR 5797 CNRS/IN2P3, Université Bordeaux 1, F-33175 Gradignan, France

⁴ Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain

⁵ FLNR, JINR, 141980 Dubna, Moscow region, Russian Federation

⁶ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

⁷ Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA

⁸ IPN Orsay, CNRS/IN2P3, F-91406 Orsay, France

⁹ Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA