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Abstract

This paper describes the program LISE which simulates the operation of fragment separators used to produce

radioactive beams via fragmentation. Various aspects of the physical phenomena involved in the production of such

radioactive beams are discussed. They include fragmentation cross-sections, energy losses in materials, ionic charge-

state distributions, as well as ion optics calculations and acceptance effects. This program is highly user-friendly, and is

designed not only to forecast intensities and purities for planning future experiments, but also for beam tuning during

experiments where its results can be quickly compared to on-line data. In addition, several general-purpose tools such as

a physical parameters calculator, a database of nuclear properties, and relativistic two-body kinematics calculations

make it useful even for experiments with stable beams. After a general description of fragment separators, the principles

underlying the calculations are presented, followed by a practical description of the program and its features. Finally, a

few examples of calculations are compared to on-line data, both qualitatively and quantitatively. r 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

1.1. History

The concept of the program LISE was elabo-
rated during the first experiments performed on
the fragment separator LISE [1] in the mid-1980s.
The aim of these experiments was the production
of light drip-line nuclei never observed before. The

method of production was the then newly applied
projectile fragmentation, in which nuclei acceler-
ated to energies several times above the Coulomb
barrier randomly breakup on a fixed target. The
kinematic focussing resulting from the high energy
of the projectiles provided enhanced yields near
zero degrees. The resulting fragments were then
collected in a solid angle centered on 01 and
separated according to magnetic rigidity by means
of two dipoles, so that drip-line nuclei would be
observed in the focal plane. The program arose
from the need to predict the magnetic rigidity at
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which a specific fragment would be observed.
These calculations had to simulate not only the
conditions of the experiment (beam energy, target
thickness, etc.), but also the fragmentation process
itself. It was quickly realized that such a tool
should be highly interactive, so that immediate
results from the calculations could be compared to
data acquired on-line.
As new and improved methods of selecting

the interesting fragments were invented, the
program LISE evolved accordingly. The two
most important steps were the addition of
further fragment selection by energy loss in a
wedge-shaped material, and the use of a velocity
filter, later followed by a small dipole to compen-
sate for the dispersion and hence obtain mass
separation. The resulting secondary beam of
fragments could then be made nearly 100% pure,
at least for light nuclei ðAo20Þ: The term radio-
active nuclear beam (RNB) was coined to desig-
nate such beams, and a wide range of new
experiments to study nuclear matter far from
stability became possible.

1.2. Purpose

Projectile fragmentation is now used worldwide
in many laboratories to produce RNBs. The
ability to predict as well as identify on-line the
composition of RNBs is therefore of prime im-
portance. This has shaped the main functions of the
program:

* to predict the fragment separator settings
necessary to obtain a specific RNB;

* to predict the intensity and purity of the chosen
RNB;

* to simulate identification plots for on-line
comparison;

* to provide a highly user-friendly graphical
environment;

* to allow configuration for different fragment
separators.

One of the emphases in the design of the program
was that it be easy to learn, so that new users could
get results for a prospective experiment very
quickly. At the time the program was conceived,
this requirement seemed to point towards the use

of personal computers, which had then only
recently become available.

1.3. Platform

The deliberate choice of personal computers
(PCs) to implement the program was made for two
reasons:

* to make use of user-friendly features (menus,
etc.);

* so that the program could be used in different
laboratories worldwide without modification.

One of the drawbacks of this choice was the
computing speed (CPU speed), but now the CPU
speed of PCs has become comparable to that of
mainframe computers. The first versions of the
program LISE were written for the Disk Operating
System (DOS) of MicrosoftTM in the language
C++. It has since been transported to the
WindowsTM environment, which is the platform
of version 4.11. With the advent of the World
Wide Web, it has become very easy to maintain
and update the program, and it can now be freely
downloaded from the following internet addresses:
www.nscl.msu.edu/lise, dnr080.jinr.ru/lise.html or
www.ganil.fr/LISE/proglise.html.

2. General description of fragment separators

While existing dipole-based fragment separators
have different characteristics such as acceptances
and maximum rigidities, they are all built on the
same principles and are run in basically the same
way. In many cases, the purpose of these devices is
the production of RNBs as intense and pure as
possible. However, some experiments can take
advantage of having a RNB composed of several
different nuclei which can then be studied simulta-
neously. For these reasons most fragment separa-
tors have to accomplish the following:

* filter the nuclei of interest from other fragments;
* collect as many nuclei of interest as possible;
* produce an achromatic image of the primary

beam spot for further transport through other
beam lines when a RNB is required.
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A dipole-based fragment separator is generally
composed of two momentum-dispersive sections
which mirror each other (see Fig. 1). The symme-
try point between the two sections is used as a
dispersive focal plane, where slits can be used to
set the momentum acceptance. In achromatic
mode, the second section merely compensates for
the dispersion caused by the first, and a one-to-one
image of the beam on target can be obtained at the
final focus. Because of the nuclear reactions
necessary to produce the fragments of interest
and straggling in the production target, the
emittance of RNBs is usually much greater than
that of primary beams. In fact, in most cases the
acceptances of the separator elements are com-
pletely filled. As a result, transmission losses often
occur in the beamlines transporting the RNBs.
Many RNBs can be produced using the two first
filtering methods described in the following
sections. However, depending on the mass region
of interest, the nuclei involved, and the goal of the
experiment, some RNBs will need further purifica-
tion using a velocity filter.

2.1. Magnetic-rigidity filtering

The first stage of filtering is accomplished by the
dipole bending elements of the first section of the
separator. The magnetic rigidity of the particles (in

Tm) is related to their velocities and mass-to-
charge ratio ðA=QÞ according to the following
relativistic relation:

Br ¼ 3:107bg
A

Q
ð1Þ

where b ¼ v=c and g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
are the velocity

and relativistic g parameter, respectively. Since
fragments produced by projectile fragmentation in
a thick production target typically have very wide
momentum distributions centered around the
beam momentum [2], many of them fulfill the Br
condition and are transmitted through the mo-
mentum slits. For fully stripped ions ðZ ¼ QÞ; this
is equivalent to a A=Z selection. As an example,
Fig. 2 shows an identification plot after magnetic-
rigidity filtering in the production of the nucleus
32Mg by fragmentation of an 40Ar primary beam
on a 1:6 mm thick Be target. Many contaminants
are present and the number of 32Mg nuclei only
amounts to 0.06% of the total intensity of the
RNB. The optics of this first stage are usually set
for a momentum-dispersive focus on the wedge
absorber and momentum selection slits (see
Fig. 1). Some fragment separators have more than
one momentum dispersive plane, allowing one to
place the momentum slits and wedge at different
locations [3].

Fig. 1. Schematic of a dipole-based fragment separator. The first section runs from the production target to the wedge energy-loss

absorber and momentum slits, which set the momentum acceptance. The fragments selected in magnetic rigidity are then refocussed on

the wedge selection slits by the second section. Finally, an optional third section provides an additional selection by using a velocity

filter before the fragments are sent to a detection system, a reaction target or further beamlines.
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2.2. Energy-loss filtering

The second method of filtering is based on
energy loss in an absorber. A material is inserted at
the dispersive focal plane between the two sections
of the fragment separator. Because each fragment,
depending on its atomic number and velocity, loses
a different amount of energy (DEpZ2=E=A), its
image at the final focus is centered at a different
location. Using a set of slits after the second
section, one can then select which fragments are
transmitted. This method has been described
elsewhere [1,3–5] and requires that the material
be shaped as a wedge (or bent along a calculated
curve for thin foils) in order to preserve the
achromaticity of the separator. This can be
understood qualitatively since for a given fragment
different positions in the dispersive focal plane
correspond to different velocities, and the energy
loss must be adjusted accordingly by varying the

thickness. In the program LISE, this method is
referred to as ‘‘Wedge selection.’’ Following our
example from the previous section, Fig. 3 shows
the same plot as Fig. 2 obtained after energy-loss
filtering. The number of contaminants has been
greatly reduced, and the number of 32Mg nuclei
now amounts to 20% of the total intensity. The
transmitted fragments roughly follow a A2:5=Z1:5

dependence [4]. The combined first and second
sections of the fragment separator are set as an
imaging system with the transverse horizontal and
vertical magnifications usually close to unity.
However, to minimize the effects of straggling in
the wedge, the magnification of the first section in
the dispersive plane can be set to a value greater
than 1, so that the second section can then be set to
a magnification smaller than 1, hence reducing the
spatial broadening of the image caused by the
straggling in the wedge.
It should be noted that the level of purification

achieved by the wedge selection depends on the
following:

* the size of the primary beam spot on the
production target;

Fig. 2. Plot of transmitted fragments after magnetic rigidity

filtering. The axes are energy loss (ordinate) and time-of-flight

(abcissa). Each fragment is labeled and the intensity is color

coded. The location of 32Mg is indicated, as well as constant

time-of-flight vertical lines corresponding to nuclei with same

neutron-to-proton numbers N=Z: These lines arise from the

magnetic rigidity filtering which transmits nuclei with the same

mass-to-charge ratio A=Q at equal velocities (see Eq. (1)). This

plot and subsequent identification plots are produced by a

Monte-Carlo generator that mimics the experimental spectra

observed on-line. Note that the Monte Carlo correctly

simulates the behavior of the energy loss which decreases as

the velocity increases, causing the ellipsoids corresponding to

each nucleus to tilt.

Fig. 3. Same as Fig. 2 but after energy-loss filtering. The wedge

consists of a 500 mm thick beryllium foil bent to a shape

calculated to preserve the achromatic focussing of the

separator. The location of 32Mg has slightly shifted to greater

energy loss and longer time-of-flight because of the slowing

down due to the insertion of the wedge. The number of

contaminants is greatly reduced due to the additional A2:5=Z1:5

selection (see text).
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* the magnification of the fragment separator;
* the thickness of the wedge;
* the setting of the slits located at the final

focus.

As the thickness of the wedge is increased, greater
separation can be achieved, but only up to a point
where the straggling becomes too important and
mixes the images of the various nuclei at the final
focus. Each of the parameters upon which the
selection depends can be adjusted in order to
properly calculate the level of purification, and
hence determine the optimum wedge thickness.
The example shown in Fig. 3 only serves as an
illustration and does not represent the optimum
configuration for selecting 32Mg:
In some other applications, it is desirable that

the shape of the wedge inserted in the beam
preserves another parameter of the beam, e.g.
velocity. In that case, the wedge is called mono-
chromatic and narrows the energy spread of the
selected particles. This feature can be used in
experiments where the nucleus of interest has to be
stopped in a solid-state detector or a gas. The
program gives four choices of wedge profiles:
homogeneous, achromatic, monochromatic and
custom. For wedges made of thin foils, the
program also calculates the curve profiles for all
choices.

2.3. Velocity filtering

Some experiments require a greater purity that
can be achieved with energy-loss filtering. Some
fragment separators have therefore added a third
selection criterion based on velocity filters (Wien
filters) [6]. These devices produce electric and
magnetic fields perpendicular to each other. The
momentum dispersion caused by the Wien filters
can be compensated for by a small dipole placed
downstream. The net result is a selection in mass
of the remaining fragments. Fig. 4 shows the
resulting identification plot, where the desired
fragment, 32Mg; is present at a 54% level of
purity. Further purification would be possible by
limiting the acceptances, but only at the expense of
intensity.

3. Principle of calculations

The complete calculation of yields obtained in a
fragment separator using projectile fragmentation
involves different domains of physics. For a given
ion, the yield can be written as the product of four
independent factors

Y ¼ INFA ð2Þ

where I is the primary beam intensity, N the
probability of producing the nucleus of interest in
the target,F the fraction of charge Q for the given
charge state and A the total acceptance of the
fragment separator. If the first factor (I) is
straightforward to calculate, the three others
involve nuclear reactions, atomic interactions at
high velocities, and ion optics calculations. In the
following subsections we present the models used
in LISE to calculate these three factors. As the
program was intended to be a tool used during
experiments, a major emphasis was placed on the
speed of the calculations, avoiding lengthy calcu-
lations such as Monte-Carlo tracking simulations.

3.1. Target yield

The factor N in Eq. (2) represents the prob-
ability of producing the fragment of interest in the
target. First we calculate the normalized total
number of reactions NPðxÞ produced by a projec-
tile P in a target slice @x at location x: This number

Fig. 4. Same as Figs. 2 and 3 but after velocity filtering.
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is governed by the following differential equation:

@NPðxÞ
@x

¼ ½1�NPðxÞ�sP ð3Þ

where sP is the total reaction cross-section of the
projectile. With the initial condition NPð0Þ ¼ 0; the
solution to this equation is clearly

NPðxÞ ¼ 1� e�xsP : ð4Þ

Therefore, the number of incident projectiles
available at thickness x to produce the nucleus of
interest F is 1�NPðxÞ ¼ e�xsP ; and sP-F being the
cross-section for producing the fragment F from
projectile P, the number NFðxÞ of fragments F
produced at thickness x follows the equation:

@NFðxÞ
@x

¼ ½1�NPðxÞ�sP-F ¼ e�xsPsP-F: ð5Þ

The solution to this equation is

NFðxÞ ¼
ð1� e�xsP ÞsP-F

sP
ð6Þ

which in the case of a thin target can be
approximated by

NFðxÞE
½1� ð1� xsPÞ�sP-F

sP
¼ xsP-F: ð7Þ

Eq. (7) is the approximation used by default in the
program LISE to calculate the target yield, in
which it is simply proportional to the target
thickness and the cross-section sP-F: However, it
becomes inaccurate when considering thicker
targets and the production of very neutron-rich
nuclei, as we shall see in the following.

3.1.1. One-step fragmentation
As the target thickness is increased, the prob-

ability of destroying the fragment of interest just
produced by projectile fragmentation becomes
significant. That probability is governed by the
total reaction cross-section of the fragment sF:
Taking this into account in Eq. (5) leads to the
following differential equation:

@NFðxÞ
@x

¼ e�xsPsP-F �NFðxÞsF ð8Þ

the solution to which is

NFðxÞ ¼
e�xsF ½1� exðsF�sPÞ�sP-F

ðsP � sFÞ
: ð9Þ

The term e�xsF in Eq. (9) indicates that the number
of fragments produced in the target will eventually
decrease as the thickness is increased, as the
probability of a second reaction destroying the
previously made fragment also increases. How-
ever, this argument can be turned around: if the
probability of having two successive fragmenta-
tions in the same target becomes non-negligible,
then many other paths to produce the final
fragment of interest can open.

3.1.2. Two-step fragmentation
In this process, the projectile undergoes a first

fragmentation to produce an intermediate frag-
ment i which in turn is fragmented to produce the
final fragment of interest F: We already know
from the previous section the number N1iðxÞ of
intermediate fragments available to make a second
fragmentation at thickness x (see Eq. (9)). The
two-step fragmentation differential equation for
the path going through intermediate fragment i is
therefore

@N2i;FðxÞ
@x

¼ N1iðxÞsi-F �N2i;FðxÞsF

¼
e�xsi ½1� exðsi�sPÞ�sP-i

ðsP � siÞ

� �
si-F �N2i;FðxÞsF

ð10Þ

where si is the total reaction cross-section of
fragment i; and sP-i and si-F are the cross-
sections to produce i from P and F from i;
respectively. The solution to this differential
equation is

N2i;FðxÞ ¼ fe�xsF ½exðsF�sPÞðsF � siÞ

þ exðsF�siÞðsP � sFÞ

þ si � sP�sP-isi-Fg=


 ½ðsF � siÞðsF � sPÞðsi � sPÞ� ð11Þ

and the total two-step fragmentation yield is the
sum of all possible paths to produce the final
fragment F:

N2F ¼
X
i

N2i;F ¼
XZP

Zi¼ZF

XNP

Ni¼NF

N2i;F ð12Þ

where ZP;F; NP;F are the proton and neutron
numbers of the nuclei involved in the reactions.
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Fig. 5 shows the evolution of the one-, two- and
three-step fragmentation yields as a function of
target thickness for the production of 78Ni from a
96Zr beam (the calculation of the three-step yield is
given in the appendix). The inset shows the same
data on a linear scale. Two- and three-step
fragmentation become the dominant processes as
the target thickness increases. Moreover, the
saturation effect for the one-step yield occurs at
a much smaller target thickness than for the two-
and three-step yields. This implies that, regardless
of all other parameters, the total yield can be
increased more in a thicker target than when
considering only one-step fragmentation. This
effect is especially important when trying to reach
the neutron drip-line, for which it is essential to
limit neutron evaporation as much as possible. It is
qualitatively easy to understand since the more
nucleons are removed in a fragmentation, the
more excitation energy the projectile-like fragment
will have, and the more neutrons it will evaporate.
As the cross-sections reflect this behavior, remov-

ing fewer nucleons at a time in more than one
fragmentation becomes more and more favorable
towards the neutron drip-line. Fig. 6 illustrates this
point for the two-step process in the case
previously shown, the production of 78Ni from
96Zr. The figure shows a ðN;ZÞ map of all possible
intermediate fragments between the projectile and
the final fragment. The size of each square
represents the yield contribution of each inter-
mediate fragment. Clearly the fragments located
roughly along the straight line between the
projectile and the final fragment are those which
contribute the most, with an accentuated effect for
the fragments with a neutron number closer to that
of 78Ni. As the target thickness increases, the two
‘‘cold fragmentations’’ going through those inter-
mediate fragments quickly outweigh the one-step
process for which 12 protons need to be removed
in a single reaction.
To expedite the evaluation of the analytical

formulas developed above, and in order to include
all multi-step processes, the program LISE uses

Fig. 5. Calculated target yields as a function of target thickness for the production of 78Ni from a beam of 96Zr on a Be target. The

inset shows the same results plotted on a linear scale for a better view of the saturation effects. The cross-sections for producing the

various fragments are calculated using the EPAX parametrization (see Section 3.2), and the total cross-sections using a simple geometric

model. For thicknesses greater than 2 g=cm2 the yield is dominated by multi-step processes. This dominance increases as the final

fragment is chosen closer to the neutron drip-line.
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numerical integration. At each target slice dx; the
yield of each fragment i produced by secondary
reactions (i.e. other than the direct–one-step–
fragmentation) is calculated using the formula

dNi ¼
Xrhombus

j

sj-iNj dx� siNi dx ð13Þ

with initial conditions Ni ¼ 0 and NP ¼ 1;
where P stands for the projectile and i for
the fragments. The summation in Eq. (13) is
limited to a rhombus domain which includes
the projectile and the fragment, in order to
exclude contributions from negligible secondary
reactions, as illustrated in Fig. 6. The contribution
from secondary reactions is then added to the total
yield of each fragment before the next iteration.
The number of iterations can be varied and has a
default value of 128.

3.2. Cross-sections

In the simplest description of a fragmentation
reaction, the composition of the fragments is
determined by the distribution of protons and
neutrons at the instant of the reaction. This implies
that the maximum cross-section is found for
fragments having the same A=Z ratio as the
projectile, and that the distributions are energy
independent above a certain total kinetic energy of
the projectile (the ‘‘limiting fragmentation’’ effect
[7]). Indeed, it is clear from many experiments that
neutron-rich projectiles produce neutron-rich frag-
ments, and vice versa. However, because the
excitation energy of the fragments is released
mostly via particle emission, neutron evaporation
is favored due to the Coulomb barrier. This effect
tends to shift the cross-sections towards the proton
drip line. For heavy projectiles such as 238U, the
energy release can lead to binary fission, which
favors the production of fragments closer to the
neutron drip-line [8]. At intermediate energies (10–
100 MeV=u), it has been shown [9,10] that the
projectile–target interaction time is long enough to
equilibrate the A=Z ratio of the whole system (the
‘‘memory effect’’). This has led to the use of
neutron-rich or neutron-deficient targets to en-
hance the cross-section towards the drip-lines. At
high energies, the use of very thick targets can lead
to multi-step processes as we have seen in the
previous section. Also, at energies up to a few
GeV=u; Coulomb-induced fission of heavy projec-
tiles can be used to produce neutron-rich nuclei [8],
although this type of reaction should not be
considered fragmentation.
The vast number of processes leading to the

production of fragments makes it impossible to
establish a single way of calculating the cross-
sections based on the reaction processes. Rather,
an empirical approach based on experimental
results seems more appropriate. This is the basis
of the EPAX [11,12] parametrization used in LISE.
This parametrization is based on projectile and
target fragmentation data and qualitatively repro-
duces predictions of intranuclear cascade calcula-
tions based on the Yariv–Fraenkel model [13].
Also, the parametrization reproduces around 85%
of the 700 experimental fragmentation cross-

Fig. 6. Contribution yields from all possible intermediate

fragments in a two-step fragmentation calculation for produ-

cing 78Ni from a beam of 96Zr: The size of the squares is

proportional to the yield contributions. The domain in which

the important contributions are found has a rhomboidal shape

extending from the projectile to the fragment.
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sections it is based on within a factor of 2. As a
general rule, the parametrization is more likely to
fail at greater distances from the valley of stability,
where experimental cross-sections are unknown,
and a small error in the exponential slope of the
cross-section trend translates into a big error on
the drip-line. Furthermore, it does not reproduce
an effect clearly seen in experimental cross-
sections, the additional binding due to the pairing
of nucleons. This odd–even staggering becomes
prominent at the drip-lines where only nuclei with
an even number of drip-line nucleons remain
bound. Consequently, the predictions of the EPAX

parametrization have to be used with caution,
especially on or near the drip-lines, and it is not
unusual to observe differences of a factor of 5 or
more with experiments. The program LISE offers
the option of entering an experimentally known or
better calculated cross-section for any given
fragment, or selecting previous versions of the
EPAX parametrization.
As this parametrization is based on experimen-

tal data, it likely already contains contributions
from the multi-step secondary fragmentation
processes. However, it is very difficult to infer the
amount of these contributions since the parame-
trization is based on data coming from numerous
sources. Their effect would be a scale down of the
overall yield, but would not affect the qualitative
conclusions given in the previous section. A more
tangible approach would be to use a model such as
the abrasion–ablation model to calculate the cross-
sections used in the calculation of secondary
reactions, to avoid the interference caused by the
data and take into account binding energies in a
more realistic way. A first attempt aimed at the
study of the production of very neutron-rich nuclei
using this model is under way [14].
Reactions where the final fragment has more

neutrons or protons than the projectile are not
covered by the EPAX parametrization. These
reactions are referred to as transfer reactions,
and are often used to produce radioactive beams
close to the valley of stability with very high
intensities. The program LISE uses and extrapola-
tion of the EPAX parametrization to calculate the
cross-sections, but they should be taken with
extreme caution since the actual cross-sections

clearly depend on the details of the reactions as
well as the beam energy.

3.3. Fragmentation

In order to calculate the acceptance factor A in
Eq. (2), it is necessary to evaluate the phase-space
distributions of the fragments produced in the
target. A simple picture of the projectile fragmen-
tation process used to produce RNBs is a
peripheral collision resulting in a sudden ablation
of part of the projectile by the target [15]. The
number of nucleons removed depends on the
impact parameter and the emerging fragment is
composed of the so-called ‘‘spectator’’ nucleons. It
has an intrinsic excitation energy due to its
deformation and the abrasion process. The frag-
ments then undergo deexcitation by particle
emission and/or g-ray cascade. Their intrinsic
momenta are determined by the contributions of
each nucleon’s momentum at the instant of the
reaction. The fragmentation process has been
studied extensively [16] and many papers have
describe models that predict the characteristics of
the fragments. For the program LISE, the most
important factors are the momentum width and
energy damping produced by the reaction. The
momentum width directly affects the number of
fragments collected in the acceptance of the
fragment separator, while energy damping lowers
the energyFand therefore the magnetic rigidity
(Br)Fof any given fragment.
In an early paper [17], Goldhaber proposed a

simple formula for the momentum width of
fragments produced by high-energy projectile
fragmentation

s2 ¼ s20
AFðAP � AFÞ
AP � 1

ð14Þ

where AF and AP are the fragment and projectiles
masses, respectively, and s0 is related to the Fermi
motion of the nucleons inside the projectile
according to s20 ¼

1
5
P2
F: In the relativistic energy

regime, the transverse and longitudinal momen-
tum widths of the fragments are similar. However,
studies in the intermediate energy domain (10–
100 MeV=u) [18,19] show that the transverse
momentum width of the projectile-like fragments
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is by far greater than the longitudinal. Part of this
difference can be attributed to Coulomb and
nuclear deflection of the fragment by the target
residue and ejected protons during the fragmenta-
tion. The following formula has been proposed to
describe the perpendicular width [19]:

s2> ¼ s20
AFðAP � AFÞ
AP � 1

þ s2D
AFðAF � 1Þ
APðAP � 1Þ

ð15Þ

where sD is called the orbital dispersion, and has a
typical value of 200 MeV=c: Whereas this formula
is able to reproduce the data from Ref. [19] at
100 MeV=u; it fails to do so at 44 MeV=u [18]. This
discrepancy can be attributed to the additional
energy damping observed at 44 MeV=u; which is
also responsible for the low-energy tails observed
in the distributions.
In the program LISE, the parallel momentum

width s8 can be calculated according to four
different parametrizations. They are successively
formula 14 from Ref. [17], a similar parametriza-
tion found in Ref. [20], the fragmentation model of
Friedman [21], and finally our own parametriza-
tion [22] which uses a convolution of a Gaussian
with an exponential tail at low energy. This last
parametrization reproduces well the data observed
at intermediate energy (10–100 MeV=u), where
dissipative effects still play an important role.
The shape and width of the parallel momentum
distribution directly affect the transmission
through the momentum acceptance.
For the transverse momentum width s>; which

affects the transmission through the solid angle
acceptance, formula 15 is used. The values of s0
and sD can be adjusted, from default values of 90
and 200 MeV=c; respectively.
The ratio of the fragment mean velocity to the

beam velocity is determined by the energy damp-
ing of the reaction. Four different choices for
calculating this ratio are also possible: it can either
be held at a fixed value, or calculated using one of
the three parametrizations of Refs. [23,24] or
Ref. [22]. Some of the parameters used in these
parametrizations can be modified, for instance in
the parametrization of Ref. [23], the amount of
energy necessary to remove each nucleon from the
projectile, which has a default value of 8 MeV:

3.4. Phase-space distributions

To calculate the selections and transmissions of
a fragment separator, the phase-space distribu-
tions corresponding to a given fragment have to be
propagated through its different sections. Further-
more, selection and acceptance cuts are usually
performed by means of slits which are located at
various image points along the device. This
requires the possibility of propagating phase-space
distributions from one image to another, taking
into account the effects of previous cuts. Because
of these constraints, phase-space distributions can
have arbitrary shapes; simplifications such as
Gaussian line shapes are not valid. A typical
example is the momentum distribution of a
fragment produced in a thick target, the usual
case in a fragment separator. Whereas the
distribution from projectile fragmentation is well
approximated by a Gaussian, the distribution
which originates from the energy loss in the target
on the other hand, is a Heaviside or square
distribution. The convolution of the two produces
a ‘‘rounded edge’’ square-like momentum distri-
bution which is difficult to model.
A standard method used to propagate such

distributions is Monte-Carlo tracking where the
initial coordinates of the particles are sampled
according to the calculated phase-space distribu-
tion, and then propagated through each element of
the system [25]. For our purpose however, this
method is not practical because of the computa-
tion time required for each fragment, since the
sampling has to cover the six-dimensional phase
space. To remedy to this problem, we have
developed a new method to quickly compute the
time evolution of arbitrary phase-space distribu-
tions. The details of the method are published
elsewhere [26]. It is based on the reduction of a
transport integral which has the form

D0ðq01;y; q0nÞ ¼
Z
1

?
Z
n

dq01;y;dq0nDðq1;y; qnÞ



Yn
i¼1

dðq0i � fiðq1;y; qnÞÞ ð16Þ

where D is the initial phase-space distribution
at time t and D0 is the resulting phase-space
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distribution at time t0: The q1;y; qn and q01;y; q0n
represent the phase-space coordinates at t and t0;
respectively. The core of this integral is the set of
functions fiðq1;y; qnÞ; which describe how each of
the final coordinates depends on the initial ones.
The Dirac d function merely selects the combina-
tions of initial coordinates which give a contribu-
tion at the final coordinate q0i: In practical
calculations one is more interested in the projec-
tions of the final phase-space distributions which
can be reduced to

P0
iðq

0
iÞ ¼

Z
1

?
Z
n

Dðq1;y; qnÞ


 dðq0i � fiðq1;y; qnÞÞ dq1;y; dqn ð17Þ

which can be understood as the weighted sum of
the points of the distribution Dðq1;y; qnÞ which
are mapped into q0i by the function fiðq1;y; qnÞ:
Under the assumptions of an incoherent object
and first-order approximation, this integral can be
reduced to convolution products of the form [26]

P0
iðq

0
iÞ ¼

1Qn
k¼1 Rik

½ %P1# %P2#?# %Pn� ðq0iÞ ð18Þ

where Rik are the first-order coefficients which
describe the transport function fiðq1;y; qnÞ ¼Pn

k¼1 Rikqk; and %PkðpkÞ ¼ Pkðpk=RikÞ ¼ PkðqkÞ
with the variable change pk ¼ Rikqk: The convolu-
tion products are computed using fast-Fourier
transform techniques.
In beam optics, the phase space is usually

defined in terms of the variables ðx; y; y;f; l; dpÞ
where ðx; yÞ and ðy;fÞ are the positions and angles
in the dispersive and non-dispersive planes, re-
spectively. The program LISE assumes the struc-
ture shown in Fig. 1 for the fragment separator,
with a focalized incoherent object at the target,
dispersive focus at the intermediate image, and an
achromatic final image, meaning that the position
and angle in the dispersive plane do not depend on
the momentum. However, the last version ð4:11Þ
allows non-zero ðxjyÞ and ðyjfÞ terms in the matrix,
meaning that focussing is no longer assumed by
default. First-order coefficients calculated with a
beam optics program such as TRANSPORT [27] are
entered in the program and can be altered
interactively. This provides the possibility of

simulating different devices or different optical
modes of a given device.

3.5. Energy loss and stragglings

The calculation of energy loss in materials is
most efficiently performed using a backward
interpolation using a table of range calculations.
The kinetic energy left after passing through a
thickness Dx of material is equal to Ei � DE where
Ei is the initial energy and DE the energy loss. If
RðEÞ is a function giving the range at a given
energy E; then in terms of range one can write

RðEiÞ ¼ Dxþ RðEi � DEÞ: ð19Þ

The energy loss DE can be calculated from a range
table of the particular particle into the particular
material by first interpolating in energy to get
RðEiÞ; and then in range to get Ei � DE and hence
the energy loss. This method is much faster than
the direct integration of the energy loss using
DE ¼

R
Dx @E=@x dE with the same accuracy. Be-

cause it is impractical to pre-calculate range tables
for all combinations of particles and materials, the
program LISE calculates the required tables on the
fly and stores them as they occur. The range
calculations are based either on the formulas of
Hubert et al. [28,29] for heavy ions of energies
from 2:5 MeV=u to 2 GeV=u in solids, or the
hydrogen-based stopping power formulas of Zieg-
ler et al. [30], depending on the user’s choice. For
very low-energy particles (down to 10 keV=u),
nuclear stopping corrections are added. The
program calculates energy losses in gaseous
materials, as well as composite materials. A list
of many common composites is available in a
menu, but any combination of up to five different
elements can be composed.
The energy straggling is calculated (in MeV)

from a semi-empirical formula [31] based on
Bohr’s classical formula

dðDEÞ ¼ kZP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTt=AT

p
ð20Þ

where ZP is the atomic number of the projectile,
ZT and AT the atomic and mass numbers of the
material and t the thickness in g=cm2: The param-
eter k increases logarithmically with incident
energy, and is parametrized from experimental
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data. Its value ranges approximately from 1 (at
1 MeV=u) to 2.5 (at 1 GeV=u).
The multiple angular straggling is determined

using the formula derived in Ref. [32] where the
‘‘reduced angle’’ *a1=2 follows a simple power law
fitted to the experimental data

*a1=2 ¼ 1:00t0:55 ð21Þ

where t is the ‘‘reduced thickness’’ given by
t ¼ pa2Nt: Here the screening parameter a ¼

0:885a0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z
2=3
P þ Z2=3

T

q
where a0 ¼ 0:529


10�8 cm; ZP and ZT are the atomic numbers of
the projectile and material, N the number of
scattering centers per unit volume and t the
penetrated thickness. The scattering angle a1=2 is
then deduced (in mrad) from the expression for the
‘‘reduced angle’’: *a1=2 ¼ a1=2Ea=2ZPZTe

2; where E
is the energy of the projectile and e the electronic
charge.

3.6. Charge states

Charge-state distributions are important in the
determination of yields as the magnetic rigidity
filtering stage of the separator is sensitive to the
charge of the particles (see Section 2.1). Ab initio
calculations are difficult because they require
knowledge of a huge number of cross-sections
and their variations as a function of energy. Better
results are obtained using semi-empirical formulae
fit to a set of data points. They provide a
determination of the mean charge state as well as
the width of the distribution. The early version of
LISE used a parametrization from Ref. [33]. More
recently, an extensive set of measurements has
been used to determine a more accurate parame-
trization [34]. At low energy (up to 6 MeV=u), the
parametrization from Ref. [35] can be used. All
three are available in the program.
A particularly important advantage of calculat-

ing charge-state distributions becomes apparent
when fragmenting heavy beams (typically those
between krypton and uranium at energies
Eo100 MeV=u), for which each fragment may
be produced in various charge states, rather than
fully stripped. In that case, the identification plots
usually used become much more difficult to

interpret without the help of a calculation. For
instance, a regular time-of-flight vs energy-loss
spectrum will show charge states of different nuclei
superimposed (see Section 5.1). A precise, inde-
pendent measurement of the kinetic energy of the
fragments, e.g. with solid-state detectors, is neces-
sary in order to sort out the different charge states.
LISE can calculate the energy losses and ranges of
the transmitted fragments in various materials,
and hence simulate any particular detector setup.
Then identification plots using these calculations
can be produced and directly compared to on-line
data during an experiment.
Another important feature of the charge-state

distributions is the ability to calculate their
evolution as the ions traverse materials of different
compositions and thicknesses. For instance, strip-
ping foils of low atomic number (Z) are often used
as a backing of high-Z production targets. This
has the effect of shifting the charge-state distribu-
tions towards fully stripped ions in order to
increase the yield of the most intense charge state.
Likewise, the use of a wedge absorber in the
energy-loss filtering method can modify the
charge-state distributions and affect the optimum
setting of the second section of the fragment
separator. For these reasons, the program LISE

calculates the charge-state distributions after every
material inserted in the path of the beam.

4. Description of the computer program

The program is constantly being improved,
guided by the feedback of the users. At the time
of this writing, the current version is 4.11, which is
described in this article. This paper is not an
exhaustive description of LISE and its many
features. The reader is invited to obtain the
program and study the extensive manual, or better
yet, install it and practice using it directly. An on-
line help feature is available in the program which
provides information on most of its features.

4.1. User interface

Fig. 7 shows an example of the main window of
the program. Most of the display is occupied by
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the chart of nuclei, which can be scrolled in both
the number of protons (vertical) or neutrons
(horizontal). For convenience, an optional naviga-
tion map allows one to jump directly to the region
of interest. As the yield calculations proceed, the
boxes corresponding to each nucleus are filled with
two numbers characteristic of the calculation
chosen by the user. By default these are the overall
transmission and yield for each nucleus. The
projectile and fragment chosen for the setting are
indicated by yellow and white strips, respectively,
40Ar and 28O in the case of Fig. 7 (40Ar is off screen
in the figure). Clicking the right mouse button on
any of the nuclei opens a window displaying all the
information for that nucleus.
The area located on the right of the chart of

nuclides contains panes which display the current
settings of the fragment separator. Buttons located

on each pane allow easy access to the correspond-
ing parameters. Other buttons located on top are
shortcuts to the most common tasks of the
program, such as file opening and saving, etc.
Placing the mouse over any of those buttons opens
a small explanation box. Finally, the menu bar
provides access to all the features of the program.

4.2. Configuration files

The program LISE can be used to calculate
yields for any fragment separator very easily using
configuration files. These files contain information
required to perform the calculations, e.g. primary
beam characteristics, acceptances and optics coef-
ficients. All parameters can be interactively mod-
ified and later saved as a new configuration. The
default configuration is for the GANIL fragment

Fig. 7. Example of the main window of the program LISE (the actual window is displayed in color). The small map located on top

provides shortcuts to all regions of the chart of nuclei. See the text for details.
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separator LISE, and standard configuration files
for several other fragment separators are distrib-
uted with the program.

4.3. Outputs and plots

In addition to a standard output file containing
information about the current calculation, LISE

can produce a number of plots showing different
aspects of the phase-space distributions as they
occur along the fragment separator. As an
example, Fig. 8 shows the images of various nuclei
calculated at the focal plane. The slits are
represented by two vertical lines and the vertical
axis is logarithmic as the yields differ by several
orders of magnitude. The plot shows that among
the fragments produced from the 40Ar beam, only
nuclei in the vicinity of 32Mg are transmitted
because their images end up at similar locations in
the focal plane. As the number of protons and
neutrons differs more and more from those of the
chosen fragment, the images get shifted away from
the slits and their transmissions (indicated in %)
become smaller.
The full power of the Monte-Carlo generator

presented in earlier identification plots becomes
apparent when calculating energy losses and
ranges in foils or detectors. Fig. 9 shows an
example of an energy loss vs total energy plot for
nuclei implanted in two silicon detectors of
thicknesses 100 and 200 mm: The energy loss in
the 100 mm detector shows the characteristic

Fig. 8. Wedge selection plot showing the location of images

corresponding to different nuclei at the achromatic focal plane.

The slits are indicated as the two vertical lines.

Fig. 9. Calculated energy loss vs total energy plot for a few nuclei produced in the fragmentation of 40Ar at 50 MeV=u: Half of the
desired fragments, 30P, are implanted in the 100 mm detector, half in the following 200 mm detector. The contaminants are implanted at

different locations due to their different masses, charges and energies. Some of them completely punch through the 100 mm detector

(27Al, 28Si, 29P and 30S).
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inflection point corresponding to the energy at
which the nuclei are no longer implanted and
punch through. Such a simulation is extremely
useful in experiments where the implantation of a
given nucleus has to be carefully adjusted. Note
that no pulse-height defects are included in the
energy loss calculations at present.

4.4. Extra features and utilities

In this section we concentrate on the most
important features only, as other features are too
numerous to be fully listed here.

4.4.1. Yield and transmission optimizations
One of the most important parameters the

experimenter needs to determine prior to forecast-
ing fragmentation yields is the target thickness.
As the target thickness increases, the number of
target nuclei interacting with the beam also
increases, but so does the energy loss. In parti-
cular, the difference in energy loss between
fragments produced from the front and the back
of the target leads to a broadening of the
momentum distribution which becomes rapidly
much larger than most fragment separator mo-
mentum acceptances. As a result, the number of
transmitted fragments decreases, and there is a
thickness for which these two competing effects
induce a maximum yield. This maximum depends
on the initial parameters of the primary beam and
target used, as well as on the fragment chosen for
optimization. Other effects such as straggling also
increase with target thickness and limit the
transmission. An example of a target-thickness
optimization calculated by LISE is shown in
Fig. 10 for the case of 32Mg produced from a
primary beam of 40Ar:
Once the optimum target thickness has been

determined, the program can calculate the mag-
netic rigidity and velocity filter settings to transmit
the desired fragment. If a wedge absorber is used
or other materials (such as detectors) are inserted
into the path of the beam, the program adjusts the
settings accordingly. These calculations can also be
performed in a reverse manner, in which the user
specifies a desired energy or magnetic rigidity, and
the program calculates the amount of material

needed to reach it. This feature is especially useful
in experiments where nuclei must be implanted at
a specific depth in a foil or a detector.
After the parameters of the fragment separator

have been set, the program can calculate the
transmission of any nucleus, based on the optics as
well as the positions of the various slits located
along the beam line. Any modification of these
parameters automatically clears the transmission
data, which then must be recalculated.

4.4.2. Physical parameter calculator
It is often important to calculate various

physical parameters such as energy, magnetic
rigidity, energy loss, range, for a given ion. This
is the purpose of the physical calculator with
which the user can quickly determine energy
losses, ranges and stragglings in any kind of
material or composite at any location along the
beam line. This feature is especially useful when
planning implantation experiments where the
nuclei of interest must be stopped in a medium
for later study (e.g., radioactive decays, nuclear
magnetic moments, etc.). The calculator also
features ‘‘backward’’ energy loss and range calcu-
lations in which the initial energy necessary to
obtain the desired final energy or range is
calculated. The required amount of a given
material to slow down particles from initial to
final energies can also be determined. Fig. 11

Fig. 10. Calculated target optimization plot. An optimal target

thickness of 250 mg=cm2 is found at the maximum of the

distribution.
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shows the physical calculator window. Various
radio buttons allow one to choose the method of
calculation and which parameter is entered. The
ion is selected on the top pane of the window, and
calculations are performed in up to seven materi-
als.

4.4.3. Reaction kinematics
Two-body reaction kinematics and Q-values can

easily be calculated within the framework of LISE.
Plots of the center-of-mass and laboratory scatter-
ing angles vs energy can be produced and saved to
disk. The calculations are fully relativistic.

4.5. Database

The program LISE has a built-in database which
contains basic information on nuclei. It is based on
the 1995 Atomic Mass Evaluation [36,37] for
known or estimated mass excesses and related

quantities, and other sources [38,39] for the half-
lives. Plots of different quantities can easily be
made as a function of atomic number Z; mass A;
neutron number N or isospin N–Z: As for all
monodimensional plots, the data can be saved to a
file in ASCII format for use by an external
program. Fig. 12 shows an example of the
database entry window. The user can quickly
navigate through the table of nuclei using
the atomic number and neutron number arrows.
The database information is also included in the
statistics window activated by right clicking on any
nucleus directly on the table of nuclei display.

4.6. On-line help

A fully featured on-line help facility is available,
containing a table of contents as well as an index
and search engine. The commands are explained in
detail, both from the menu system and the toolbar.

Fig. 11. Physical calculator window showing various calculations performed for the nucleus 24O: The energy can be entered not only

by the different parameters such as magnetic rigidity, velocity or momentum (radio buttons on the left), but also by specifying either an

energy after a given material (top right) or the total range (bottom right).
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A history of changes made in various versions is
also included which describes the new features
added since the first WindowsTM 98 version.
Finally, a reference manual provides additional
information on the principles of the calculations,
as well as a tutorial to guide new users.

5. Comparison with data

As an example of the results and help provided
by the program LISE during an experiment, we
present a quantitative comparison with data
obtained from the fragmentation of 86Kr beams
at 60 MeV=u on a composite Ni ð100 mmÞ and
Be ð500 mmÞ target [40]. The particle identification
in this experiment is complicated by the fact that
the heaviest fragments emerge from the target with
more than one charge state. Because the Br
selection is sensitive to the charge of the ions,
different mass and charge combinations of an

isotopic line can get mixed on the regular energy-
loss vs time-of-flight identification plot.

5.1. On-line identification

Fig. 13 shows a qualitative comparison between
the LISE calculation and the data taken at Br ¼
2:367 Tm: The mixing of different masses and
charge states is clearly visible for fragments
between Cr and Ge. The lighter fragments appear
to emerge fully stripped, and the A=Z ¼ 2 vertical
lines can be seen on the lower right corners of the
spectra. To separate the different charge states, an
additional measurement is necessary. Usually the
total kinetic energy of the fragments can be
measured by stopping them in silicon detectors.
Then the charge state of each individual ion can be
determined and used to gate the identification plot.
Fig. 14 shows the same comparison between
calculation and data for fully stripped ions only
ðZ �Q ¼ 0Þ: The masses of isotopes between Cr
and Ge are now clearly resolved.

Fig. 12. Database entry window. See text for details.
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The real power of the simulation is more
apparent when an energy-loss wedge is used to
further select specific isotopes. As another exam-
ple, we take the recent discovery of the doubly
magic nucleus 48Ni [41] for which a 58Ni at
74:5 MeV=u projectile was used on a Ni target,
followed by a Be wedge. Fig. 15 shows the

comparison between the experimental and calcu-
lated energy loss vs time-of-flight spectra. Because
only part of the usual ‘‘tree’’ pattern is visible, it is
much more difficult to identify the group of events
corresponding to a given nucleus. By comparing
the data with the simulation though, this task
becomes straightforward as the calculated pattern

Fig. 13. Energy loss vs time-of-flight identification plots. The spectrum on the left contains the data taken during the experiment. The

spectrum on the right is the LISE simulation. The isotopic lines between Cr and Ge clearly show different charge states and masses

mixed together.

Fig. 14. Same as Fig. 13 but gated on the fully stripped ions. Now each mass can be clearly separated for the nuclei between Cr and

Ge.
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closely matches the data. The simulation proves to
be especially useful in such a low-yield experiment
(less than one 48Ni nucleus was produced per day
[41]) where it is essential to be able to verify that
the settings of the fragment separator are correct
without actually seeing the whole spectrum,
relying on the most copiously produced nuclei to
check the identification.
Note that both the time-of-flight and the energy

loss can be calculated absolutely, provided the
flight path and detector thickness are known, and
the experimental spectra are properly calibrated.
In Fig. 15 the energy loss scale has been calibrated,
which provided an additional check on the
identification of the nuclei.

5.2. Yields

Fig. 16 shows a quantitative comparison be-
tween the observed and calculated yields in the
fragmentation of a 86Kr beam at 60 MeV=u: The
isotopic distributions are plotted for elements from
Ti to Ge, for fully stripped ions on the top and
hydrogen-like ions on the bottom. Overall the
agreement is quite good, except in the case of Cu
and Ge isotopes for which the absolute magni-
tudes of the yields are underestimated and over-
estimated, respectively, by about a factor of 2 in
the case of the fully stripped ions.

Note that contrary to the fully stripped ions, the
yields of hydrogen-like ions decrease for smaller
atomic numbers. This is due to the one-electron
charge state cross-section which drops sharply as
the Coulomb field of the nuclei decreases.

6. Conclusion

The program LISE described in this paper
simulates the operation of dipole-based fragment
separators used to produce radioactive beams via
projectile fragmentation. It can be used not only to
forecast the yields and purities of radioactive
beams, but also as an on-line tool for beam
identification and tuning during experiments. Its
interface and algorithms are designed to provide a
user-friendly environment allowing easy adjust-
ments of the input parameters and quick calcula-
tions. It can be configured to simulate the
fragment separators of various research institutes
by means of configuration files. The program LISE

is constantly updated and improved upon requests
from the users. It is readily available on the World
Wide Web and runs on PC (Personal Computer)
platforms, as well as on WindowsTM 95 and 98
emulators on other platforms such as Unix or
MacOSTM:

Fig. 15. Comparison between experimental and calculated identification plots. The spectrum on the left is taken from Ref. [41], and the

spectrum on the right is the LISE simulation. The pattern observed in the experiment is readily recognized in the simulation, and makes

the assignments straightforward.
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Appendix

Three-step fragmentation yields are obtained in
the same way as two-step fragmentation yields.
Knowing the number of fragments produced via a
two-step process from Eq. (11), the same type of

differential equation can be written

@N3i;j;FðxÞ
@x

¼ N2i;jðxÞsj-F �N3i;j;FðxÞsF

¼ fe�xsj ½exðsj�sPÞðsj � siÞ

þ exðsj�siÞðsP�sjÞþsi � sP�sP-isi-jg=

½ðsj � siÞðsj � sPÞðsi � sPÞ�*sj-F

� N3i;j;FðxÞsF ðA:1Þ

where si-j and sj-F are the cross-sections for
producing the intermediate fragment j from i and
F from j, respectively. The solution to this

Fig. 16. Quantitative comparison between observed and calculated yields in the fragmentation of a 86Kr beam at 60 MeV=u: The top
figure shows the yields for fully stripped ions, and the bottom figure the yields for hydrogen-like ions.
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differential equation is

N3i;j;FðxÞ ¼ fe�xsF ½ð�1þ exðsF�siÞÞsjðsj � sPÞsP

þ s2F½�e
xðsF�sjÞsi þ exðsF�sPÞðsi � sjÞ

þ exðsF�siÞsj � exðsF�siÞsP þ exðsF�sjÞsP�

þ s2i ½ð�1þ exðsF�sPÞÞsj � ½�1þ exðsF�sjÞ�sP�

þ sF½exðsF�sjÞs2i þ exðsF�siÞs2j
þ exðsF�sPÞð�s2i þ s2j Þ þ exðsF�siÞs2P � exðsF�sjÞs2P�

� si½�ð�1þ exðsF�sPÞÞs2j
þ ½�1þ exðsF�sjÞ�s2P��sP-isi-jsj-Fg=


 ½ðsF � siÞðsF � sjÞðsi � sjÞ


 ðsF � sPÞðsi � sPÞðsj � sPÞ�: ðA:2Þ

The total three-step fragmentation yield is
obtained by summing the individual yields
over all possible paths to produce the final
fragment

N3F ¼
X
i

X
joi

N3i;j;F

¼
XZP

Zi¼ZF

XNP

Ni¼NF

XZi

Zj¼ZF

XNi

Nj¼NF

N3i;j;F: ðA:3Þ
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