

v.9.10.270 from 02/03/16

- 2. Optics (1→1)
- 3. Optics $(2\rightarrow 1)$
- 4. Detector resolution for optics $(1 \rightarrow 1)$
- 5. Contribution of straggling in wedge
- 6. Some remarks: charge states
- 7. Summary

Direct file:http://lise.nscl.msu.edu/9 10/reverse/A1900 direct.lppReverse file:http://lise.nscl.msu.edu/9 10/reverse/A1900 Lreverse.lpp

Preparation of "direct" file : double focus & achromatism

LISE-type reverse file creation

beam

3.2582 Tm

First order matrix elements: R/R, R/A, R/D

3.5

2.5

— X/T glob — Y/P glob

First order matrix elements: A/R, A/A, A/D

MICHIGAN STATE UNIVERSITY LISE++

Initial emittance to generate an array of rays to benchmark

< X'(Theta) [mrad] > after Stripper

٠

"NOT" [-20, -15]

< Y"(Phi) [mrad] > after Stripper

Settings

Gate 4

 \mathbf{V}

With reverse configurations it is possible to use

- experimental rays from the final point
- LSE⁺⁺ rays generated for current reverse mode (LISE or COSY)

Rays generator			
Setting Fragment Locations 124Sn50+50+ Number of locations Projectile Fragmentation Number of locations Gate N Cate Number of locations Setting Fragment ation N Gate N Setting Fragmentation N Gate N Setting Fragmentation N Fields to Plot Image4(105) X-axis X(Inna) Y-axis X'(Theta) [mrad] after BLOCK Image4(105) Output Ray file MC_LISE ray Image Mun Make I	hs = 1 110 Number of fields = 15 110 1 Z (atomic number) 115 5 1 Z (atomic number) 1 2 N (neutron number) 1 2 3 q (ion charge) 1 4 4 X (mm) 1 7 5 0 (empty) 1 7 6 X (Theta) [mrad] 1 7 0 (empty) 1 8 Y (mn) 1 9 0 (empty) 1 10 Y (Phi) [mrad] 1 11 0 (empty) 1 12 Energy (MeV/u) 1 13 0 (empty) 1 14 Time from Target [ns] 1 15 0 (empty) 1	Number of Rays = 10000 11000000 Output Mode C 0. User mode Compatible with LISE ++ MC input format- modifications C 1: no coordinate system modifications C 2: X n = - X'; Y'n = - Y' (0T) C 3: X'n = - X'; Y'n = - Y' (MP) Passed/Unpassed rays Write only passed rays C Write only passed rays C Write only passed rays File format File format Field separator = tab Image: Column for event number	out Mode ○ 0: User mode mpatible with LISE++ MC input format ○ 1: no coordinate system modifications ● 2: X n = -X ; Y' n = -Y' (OT) ○ 3: X' n = -X'; Y' n = -Y' (MP)

Four ray arrays have been generated at the final plane using LISE⁺⁺ reverse mode:

- Using 1st order optics
- Using 2nd order optics
- Using 1st order optics and thin wedge @ I2
- Using 1st order optics and thick wedge @ I2

Benchmarking process of the reverse technique

MICHIGAN STATE UNIVERSITY LISE++

X [mm]

X [mm]

1st order optics Direct and Reverse envelopes

MICHIGAN STATE

L I S E ++

X vs X' reverse results

Y vs Y' direct and reverse 1st order optics plots

MICHIGAN STATE

Y vs Y' reverse different optics order plots

Reverse (Final \rightarrow **Target) :** X vs. dP/P

S NSCL

X (horizontal) direct & reverse envelopes for 1st & 2nd order optics

Y (vertical) reverse envelopes for different order optics

Using detector resolution (x,y) with 1st order optics : X vs X'

MICHIGAN STATE

R

Using detector resolution (x,y) with 1st order optics : Y vs Y'

OT, 09-Feb-2016, East Lansing

MICHIGAN STATE

 $d(X), d(Y) = 0 \text{ mm}, d(X'), d(Y') = 0 \text{ mrad}, \quad d(E) = \frac{2\%}{2\%}$ manually been entered in the ray file

Expected answer due to the achromatic mode

MICHIGAN STATE

1st order

E ++

Y vs Y'

Contribution of straggling in wedge : Y vs Y'

MICHIGAN STATE UNIVERSITY LISE++

10% of range

Thick wedge: 40% of range

X vs X'

1st order

Thin wedge: 10% of range

X vs X' 1st order

Charge states in reverse technique

