

Recoil separator "SECAR" @ MSU

High Order Extended Configurations

Version 9.10.169 from 08/20/2015

□ SECAR extended configurations

- SECAR documentation
- SECAR phase1
- LISE⁺⁺ modifications for SECAR
- SECAR files location
- SECAR phase 1 with COSY maps
- Optimization with LISE⁺⁺
- SECAR phase1: Angular Acceptance
- SECAR phase1: Momentum Acceptance
- SECAR phase1: Charge states selection
- **Experiment** ¹⁵O(α,γ)¹⁹Ne
 - Fusion
 - De-excitation by gamma at low energies vs. kinematics
- Segmented configuration
- Open questions

Link: Separator "SECAR"

MICHIGAN STATE

1. SEparator for CApture Reactions (SECAR) Pre-Conceptual Design Report

Facility for Rare Isotope Beams FRIB-M41600-RP-000055-R002 SEparator for CApture Reactions (SECAR) Pre-Conceptual Design Report Issued 1 October 2014

SEparator for CApture Reactions (SECAR) Pre-Conceptual Design Report

H. Schatz^{1,2,3}, M.S. Smith⁴, G.P.A. Berg^{5,3}, M. Couder^{5,3}, J.C. Blackmon⁶, K.A. Chipps^{7,4}, U. Greife⁸, F. Montes^{1,2}, A. Bacher⁹, D.W. Bardayan⁵, A. Chen¹⁰, C. Deibel⁶, L. Erikson¹¹, J. Goerres⁵, U. Hager^{1,2}, D. Lawton^{1,2}, D. Leitner^{1,2}, M. Moran⁵, S.D. Pain⁴, G. Perdikakis¹², K.E. Rehm¹³, K. Smith^{5,7}, A. Spyrou^{1,2}, M. Syphers^{1,2}, M. Wiescher⁵, W. Wittmer^{1,2}, C. Wrede^{1,2}, X. Wu^{1,2}, A. Zeller^{1,2}

2. COSY file "inputCOSY-MC-4.fox" by G.Berg & M.Couder (Notre Dame)

Helpful information for the recent recoil separator development in LISE⁺⁺: Documentation for extended configurations of the recoil separator "DRAGON" @ TRIUMF <u>http://lise.nscl.msu.edu/9_10/DRAGON/DRAGON.pdf</u>

Element		Elomont pro-	antias
Technical	Decoription	"Effective"	Deduc/half
Neme	Description	Linecuve	reactions/main
Name		Lengin(m)/	gap (m)
		angle(deg)	
DI 1	Deiff	101/201	
	Oned Her	0.0	0.05
DI 2	Quad+riex	0.25	0.05
	Drift	0.19	0.069
Q2	Quad	0.30	0.068
DL3	Drift	0.58	1.05/0.02
BI	Dipole	22.5 deg	1.25/0.05
DL4		1.00	1.05/0.00
B2	Dipole	22.5 deg	1.25/0.03
DLS	Drift	0.77	
DL6	Drift	0.40	
HEX1	Hexapole	0.26	0.11
DL7	Drift	0.27	
Q3	Quad	0.35	0.11
DL8	Drift	0.35	
Q4	Quad	0.35	0.08
DL9	Drift	0.21	
Q5	Quad	0.35	0.06
DL10	Drift	0.145	
DL11	Drift	0.185	
DL12	Drift	0.17	
B3	Dipole	22.5 deg	1.25/0.05
DL13	Drift	0.51	
B4	Dipole	22.5 deg	1.25/0.05
DL14	Drift	0.30	
HEX2	Hexapole	0.26	0.12
DL15	Drift	0.27	
DL16	Drift	0.27	
Q6	Quad	0.34	0.14
DL17	Drift	0.20	
Q7	Quad	0.34	0.13
DL18	Drift	0.50	

T-11-22 The -			file maine OFCAD also
Lable 1 1 Lbe of	nnmizea ionginianal i	ocanons and lengins d	DI THE VATIOUS SECAR EIE
1 doite 5.5. 1 me e	princes rongitudina i	countrolles and roughles c	i me throus shorthe eres

VF1	Velocity filter	2.365	0.11
DL19	Drift	0.50	
HEX3	Hexapole	0.26	0.11
DL20	Drift	0.28	
OCT1	Octupole	0.26	0.07
DL21	Drift	1.75	
DL22	Drift	0.872	
Q8	Quad	0.25	0.05
DL23	Drift	0.395	
Q9	Quad	0.30	0.06
DL24	Drift	0.36	
B5	Dipole	42.5 deg	1.25/ 0.03
DL25	Drift	0.35	
B6	Dipole	42.5 deg	1.25/0.03
DL26	Drift	0.83	
Q10	Quad	0.26	0.09
DL27	Drift	0.65	
Q11	Quad	0.34	0.12
DL28	Drift	1.00	
VF2	Velocity filter	2.365	0.11
DL29	Drift	4.60	
DL30	Drift	0.25	
Q12	Quad	0.30	0.07
DL31	Drift	0.30/0.35	
Q13	Quad	0.30	0.05
DL32	Drift	0.66	
B7	Dipole	55.0 deg	1.25/0.03
DL33	Drift	0.68	
B8	Dipole	55.0 deg	1.25/ 0.03
DL34	Drift	0.86	
Q14	Quad	0.30	0.05
DL35	Drift	0.45	
Q15	Quad	0.30	0.05
DL36	Drift	1.70/1.21	
DL37	Drift	0.75/1.10	
DL38	Drift	0.75/0.40	

SECAR parameters (p.2)

Magnet

Electrostatic

system

± 0.0002 in GFR

50

12800

+/- 300

2300

2365

220

538

2.7

kW

kg

kg

kV

 $\mathbf{m}\mathbf{m}$

 \mathbf{mm}

 $\mathbf{m}\mathbf{m}$

kV/mm

				Parameter									
		Units		B1	B2	B 3	B4		B5		B6	B7	B8
Bendir	ng radius	mm		1250	1250	1250	1250		1 250		1250	1250	1250
Maxim	um rigidity	Tm		0.8	0.8	0.8	0.8		0.8		0.8	0.8	0.8
Max. n	nagnetic field B	Т		0.64	0.64	0.64	0.64		0.64		0.64	0.64	0.64
Bendir	ng angle, <u>to right</u>	deg		22.5	22.5	22.5	22.5		42.5		42.5	55.0	55.0
Centra	l ray, arc length	mm		490.9	490.9	490.9	490.9		927.2		927.2	1199.	1199.9
Vertica	al gap, full size	mm		60	60	100	100		60		60	60	60
GFR, o	B/B <+/−0.02%	mm		200	200	100	200		1 00		100	100	100
Pole w	idth	mm		380	380	400	500		300		300	280	280
Entran	ce s ₁₁			0.1900	0.1150	0.1900	0.190	0	0.189	0	0.1970	0	0
Entran	ce s ₁₂	1/m		0.0025	0.0125	1.07	-0.339)	0.696		-1.66	0	0
Entran	ce s ₁₃	1/m ²		0.154	0.198	-9.10	-5.51		-0.95	3	-50	0	0
Entran	ce S ₁₄	1/m ³		0.78	-40.77	0.	-0.84		-53.		0.	0	0
Exit s ₂	1			0.1500	0.1150	0.1150	0.190	0	-0.17	2	0.200	0	0
Exit s2	2	1/m		-0.019	-0.2448	0.0410	-0.030)	-5.92	8	-4.00	0	0
Exit sz	3	1/m ²		0.147	1.411	32.7	-0.364	4	-26.5		69.	0	0
Exit s ₂	4	1/m ³		0.10	37.47	-57.	-0.15		-940.		0.	0	0
	Good-field	1	Ho	rizontal	1	1	I	mm		+ 1	10	1	
	Bagion (GE	D)	Va	rtical						 2	5		
	Region (OI	K)		n D field	in CED			T		± 3	<u>,</u>		
			Ma	x. B field	in GFR			1		0.1.	2		
			Eff	ective fie	ld length			mm		236	5		
			Pol	e gap, ve	rtical			$\mathbf{m}\mathbf{m}$		900			
	Dipole		Pol	e width, a	approx			mm		102	0		

B field, homogeneity

Max. E field in GFR

Effective field length

Electrode gap, horizontal

Electrode height, vertical

Max. Voltages on electrodes

Estimated power

2 Coils Weight

Iron weight

Dipoles

Table 3.10. Specifications of SECAR Velocity Filters

Table 3.4.	Quadrupole	and multipole	field settings	tor the	SECAR C
charge stat	a 21 Amerory	206 MeV)			

Our drawnal a	Deding (m)	Dala dia Gald	One first The
Quadrupole	Radius (m)	Pole up field	Gradient 1/m
		(1)	
Q1	0.05	-0.3654	-7.3080000
Q2	0.068	0.217880	3.2041176
Q3	0.11	0.242643	2.2058455
Q4	0.08	-0.24501	-3.0626250
Q5	0.06	0.1112810	1.8546833
Q6	0.14	0.181721	1.2980071
Q7	0.13	-0.0301435	-0.2318731
Q8	0.05	-0.15032	-3.0064000
Q9	0.06	0.23438	3.3482857
Q10	0.09	-0.03250	-0.3611111
Q11	0.12	0.1616	1.3466667
Q12	0.07	-0.1820	-2.6000000
Q13	0.05	0.1910	3.8200000
Q14	0.05	0.1290	2.5800000
Q15	0.05	-0.138	-2.7600000
HEX(Q1)	0.05	-0.00289	
HEX1	0.11	0.0103064	
HEX2	0.12	0.011057	
HEX3	0.11	-0.01251	

The optimized ion optics setup was calculated for the transmission of "reference" ions with mass 66, charge 21, and a laboratory energy of 206 MeV corresponding to 3.12 MeV center of mass energy. These ions correspond to the recoiling ⁶⁶Se ions from the ⁶⁵As(p,γ)⁶⁶Se reaction, and have the maximum magnetic rigidity of $B\rho = 0.800$ Tm. The field settings for recoils from any particular reaction are then determined by appropriately scaling the optimized settings by the ratio of magnetic rigidities. The lowest design rigidity for our system is 0.14 Tm. In the optimized setup, the maximum design rigidity of 0.8 Tm and a dipole magnet with bending radius of 1.25 m require dipole fields of 0.64 T. The pole tip fields and pole tip radii of the quadrupoles, hexapoles, octupole, and multipole strengths are listed in Table 3.4. The optimum field settings of the velocity filter are 0.1143 T magnetic field and +/- 308.3 kV for the HV on the electrodes, corresponding to an electric field of 2.80kV/mm. Component specifications for the velocity filters are given in Table 3.9 in §3.7.3. The bending radii for the magnetic fields.

Beam Beam energy Emittance A Element q+ Beam CARD 1D - shape 66 Se 21 Energy 🔎 MeV/u ? 3.12587 Distribution (sigma, semi-axis, half-width) method) Beam in \bigcirc TKE 206.133 MeV 1.X mm Brho 0 0.8 Tm 0.75 Rectangle uniform Ŧ LISE++ Beta+ decay GeV/c 2. T mrad 20 Р 5.0365 Rectangle uniform Ŧ C U \mathbf{C} 9816 ΚV 3.Y mm 0.75 Rectangle uniform • Table of Nuclides 4. P mrad 20 Rectangle uniform • Beam intensity-Z 5. L mm 0 Gaussian • C 21 enA Û È N 6.D % 1.5 Rectangle uniform æ.

For SECAR phase1

MICHIGAN STATE

E ++

	REPORT	
	from	COSY
	October	file,
	2014	table v4
element	т	Т
Q1	-0.3654	-0.3653
Q2	0.2179	0.2179
Q3	0.2426	0.2426
Q4	-0.2450	-0.2450
Q5	0.1113	0.1113
Q6	0.1817	0.1817
Q7	-0.0301	-0.0301
Q8	-0.1503	
Q9	0.2344	
Q10	-0.0325	
Q11	0.1616	
Q12	-0.1820	-0.2200
Q13	0.1910	0.2016
Q14	0.1290	0.1315
Q15	-0.1380	-0.1450
HEX(Q1)	-0.0029	-0.0006
HEX1	0.0103	0.0086
HEX2	0.0111	0.0145
HEX3	-0.0125	-0.0434

SECAR settings in LISE⁺⁺ : target – FP2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Ν	Block name	Kind of	Start	Length	DriftMode	B0 (kG)	Br-corrsp	Rapp(cm)	L_eff(m)	2nd	Calc	AngAcc	Slits	Xmin	Xmax	Ymin	Ymax	Appert	Xmin	Xmax	Ymin	Ymax
or		Block	(m)	(m)	Angle(°)*		Br-dip*	R(m)*	Len(m)*	order	Mode	mode	shape	slit	slit	slit	slit	shape	limit	limit	limit	limit
1	+	Dipolo	0 000	0 000	10.0.*	12 667	0 0000*	2 0.0*	0.00*										E0	1 5 0	E 0	1 5 0
1. 2	cuning	Dipole	0.000	0.000	+0.0 ^	+2.00/	0.8000^	3.00^	0.00^	-			rectn					ellps	-50	+50	-50	+50
2.	01	Drift Drift	0.000	0.000	multipolo	-2 652	0 8000	5 00	0.25	Noc	1		rectn					ellps	-50	+50	-50	+50
J.	415	Drift Drift	1 050	0.230	atondord	-3.033	0.0000	5.00	0.25	yes	1		rectn					ellps	-50	730	-30	+30
4. c	02	Drift	1.050	0.190	standard	12 170	0 0000	6 00	0.20		1		rectn					ellps	60	1.60	60	1.60
э. с	Q2 d12	Drift Drift	1.240	0.500	atondord	+2.179	0.8000	0.00	0.30	yes	1		rectn					ellps	-60	+00	-60	+00
7	u15	Dincle	2 120	0.300	100 E *	10 667	0 0000*	1.05+	0.40*				rectn					errps			20	120
	BI	Dibore	2.120	1 000	+22.5 ^	+2.00/	0.8000^	1.251	0.49^	yes			recth					rectn			-30	+30
°.	014 D2	Drift	2.011	1.000	standard	10 667	0 0000*	1.05+	0.40*				rectn					rectn			20	120
9.	B2	Dibore	3.011	0.491	+22.5 ^	+2.00/	0.8000^	1.251	0.49^	yes			recth					rectn			-30	+30
10.	d15	Drift	4.102	0.770	standard								rectn					rectn				
11.	d16 U1	Drift	4.872	0.400	standard	10.000	0.0000	11 00	0.00		1		rectn					rectn	110	1110	110	1110
12.	Hexi	Drift	5.272	0.260	multipole	+0.000	0.8000	11.00	0.26	yes	T		rectn					eribs	-110	+110	-110	+110
13.	dl/	Drift	5.532	0.270	standard								rectn					rectn				
14.	Q3	Drift	5.802	0.350	multipole	+2.426	0.8000	11.00	0.35	yes	1		rectn					ellps	-110	+110	-110	+110
15.	d18	Drift	6.152	0.350	standard								rectn					rectn				
16.	Q4	Drift	6.502	0.350	multipole	-2.450	0.8000	8.00	0.35	yes	1		rectn					ellps	-80	+80	-80	+80
17.	d19	Drift	6.852	0.210	standard								rectn					rectn				
18.	Q5	Drift	7.062	0.350	multipole	+1.113	0.8000	6.00	0.35	yes	1		rectn					ellps	-60	+60	-60	+60
19.	d110	Drift	7.412	0.145	standard								rectn					rectn				
20.	d111	Drift	7.557	0.185	standard								rectn					rectn				
21.	slits FP1	Drift	7.742	0.000	SLITS								rectn	-100	+100	-50	+50	rectn				
22.	dl12	Drift	7.742	0.170	standard								rectn					rectn				
23.	B3	Dipole	7.912	0.491	+22.5 *	+2.667	0.8000*	1.25*	0.49*	yes			rectn					rectn			-50	+50
24.	dl13	Drift	8.403	0.510	standard								rectn					rectn			-50	+50
25.	B4	Dipole	8.913	0.491	+22.5 *	+2.667	0.8000*	1.25*	0.49*	yes			rectn					rectn			-50	+50
26.	dl14	Drift	9.403	0.300	standard								rectn					rectn				
27.	Hex2	Drift	9.703	0.260	multipole	+0.000	0.8000	12.00	0.26	yes	1		rectn					ellps	-120	+120	-120	+120
28.	d115	Drift	9.963	0.270	standard								rectn					rectn				
29.	dl16	Drift	10.233	0.270	standard								rectn					rectn				
30.	Q6	Drift	10.503	0.340	multipole	+1.817	0.8000	14.00	0.34	yes	1		rectn					ellps	-140	+140	-140	+140
31.	dl17	Drift	10.843	0.200	standard								rectn					rectn				
32.	Q7	Drift	11.043	0.340	multipole	-0.301	0.8000	13.00	0.34	yes	1		rectn					ellps	-130	+130	-130	+130
33.	dl18	Drift	11.383	0.500	standard								rectn					ellps				
34.	VF1	Wien	11.883	2.365									rectn					rectn	-110	+110	-35	+35
35.	d119	Drift	14.248	0.500	standard								rectn					rectn				
36.	Hex3	Drift	14.748	0.260	multipole	+0.000	0.7999	11.00	0.26	yes	1		rectn					ellps	-110	+110	-110	+110
37.	d120	Drift	15.008	0.280	standard					-			rectn					rectn				
38.	Oct1	Drift	15.288	0.260	standard								rectn					ellps	-70	+70	-70	+70
39.	d121	Drift	15.548	1.750	standard								rectn				1	rectn				
40.	slits FP2	Drift	17.298	0.000	SLITS								rectn	-150	+150	-100	+100	rectn				

This settings list can be produced in LISE++ using menu "Experimental Settings -> Optics -> Optics settings: View and Print"

These aperture parameters are used to obtain angular and momentum acceptances of the separator. 6

SECAR settings in LISE⁺⁺ : FP2 – DL38

1 N or	2 Block name	3 Kind of Block	4 Start (m)	5 Length (m)	6 DriftMode Angle(°)*	7 B0(kG)	8 Br-corrsp Br-dip*	9 Rapp(cm) R(m)*	10 L_eff(m) Len(m)*	11 2nd order	12 Calc Mode	13 AngAcc mode	14 Slits shape	15 Xmin slit	16 Xmax slit	17 Ymin slit	18 Ymax slit	19 Appert shape	20 Xmin limit	21 Xmax limit	22 Ymin limit	23 Ymax limit
41.	d122	Drift	17.298	0.872	standard								rectn					rectn				
42.	Q8	Drift	18.170	0.250	multipole	-1.503	0.7999	5.00	0.25	yes	1		rectn					ellps	-50	+50	-50	+50
43.	d123	Drift	18.420	0.395	standard								rectn					rectn				
44.	Q9	Drift	18.815	0.300	multipole	+2.343	0.7999	6.00	0.30	yes	1		rectn					ellps	-60	+60	-60	+60
45.	d124	Drift	19.115	0.360	standard								rectn					rectn				
46.	в5	Dipole	19.475	0.927	+42.5 *	+2.667	0.8000*	1.25*	0.93*	yes			rectn					rectn			-30	+30
47.	d125	Drift	20.403	0.350	standard								rectn					rectn				
48.	B6	Dipole	20.753	0.927	+42.5 *	+2.667	0.8000*	1.25*	0.93*	yes			rectn					rectn			-30	+30
49.	d126	Drift	21.680	0.830	standard								rectn					rectn				
50.	Q10	Drift	22.510	0.260	multipole	-0.325	0.8000	9.00	0.26	yes	1		rectn					ellps	-90	+90	-90	+90
51.	d127	Drift	22.770	0.650	standard								rectn					rectn				
52.	Q11	Drift	23.420	0.340	multipole	+1.616	0.8000	12.00	0.34	yes	1		rectn					ellps	-120	+120	-120	+120
53.	d128	Drift	23.760	1.000	standard								rectn					rectn				
54.	VF2	Wien	24.760	2.365									rectn					rectn	-110	+110	-35	+35
55.	d129	Drift	27.125	4.600	standard								rectn					rectn				
56.	slits FP3	Drift	31.725	0.000	SLITS								rectn	-150	+150	-100	+100	rectn				
57.	d130	Drift	31.725	0.250	standard								rectn					rectn				
58.	Q12	Drift	31.975	0.300	multipole	-1.820	0.7999	7.00	0.30	yes	1		rectn					ellps	-70	+70	-70	+70
59.	d131	Drift	32.275	0.300	standard								rectn					rectn				
60.	Q13	Drift	32.575	0.300	multipole	+1.910	0.7999	5.00	0.30	yes	1		rectn					ellps	-50	+50	-50	+50
61.	d132	Drift	32.875	0.660	standard								rectn					rectn				
62.	в7	Dipole	33.535	1.200	+55.0 *	+2.667	0.8000*	1.25*	1.20*	yes			rectn					rectn			-30	+30
63.	d133	Drift	34.735	0.680	standard					-			rectn					rectn				
64.	B8	Dipole	35.415	1.200	+55.0 *	+2.667	0.8000*	1.25*	1.20*	yes			rectn					rectn			-30	+30
65.	d134	Drift	36.615	0.860	standard					-			rectn					rectn				
66.	Q14	Drift	37.475	0.300	multipole	+1.290	0.8000	5.00	0.30	yes	1		rectn					ellps	-50	+50	-50	+50
67.	d135	Drift	37.775	0.450	standard					-			rectn					rectn				
68.	Q15	Drift	38.225	0.300	multipole	-1.380	0.8000	5.00	0.30	yes	1		rectn					ellps	-50	+50	-50	+50
69.	d136	Drift	38.525	1.700	standard					-			rectn					rectn				
70.	d137	Drift	40.225	0.750	standard								rectn					rectn				
71.	d138	Drift	40.975	0.750	standard								rectn					rectn				

This settings list can be produced in LISE⁺⁺ using menu "Experimental Settings -> Optics -> Optics settings: View and Print"

These aperture parameters are used to obtain angular and momentum acceptances of the separator.

OT, 08/20/15, East Lansing

Configuration "SECAR phase1"

Table 3.13. SE	CAR Optimize	ed Setup for a 1 V	F system
Quadrupole	Radius (m)	Pole tip field	Gradient T/m
		(T)	
Q1	0.05	-0.36534	-7.3068000
Q2	0.068	0.21788	3.2041176
Q3	0.11	0.242644	2.2058545
Q4	0.08	-0.24501	-3.0626250
Q5	0.06	0.11128	1.8546667
Q6	0.14	0.181721	1.2980071
Q7	0.13	-0.0301475	-0.2319038
Q8			
Q9			
Q10			
Q11			
Q12	0.07	-0.22000	-3.1428571
Q13	0.05	0.20160	4.0320000
Q14	0.05	0.13147	2.6294000
Q15	0.05	-0.1450	-2.9000000
HEX(Q1)	0.05	-0.0006	
HEX1	0.11	0.008620	
HEX2	0.12	0.01449	
HEX3	0.11	-0.0435	
OCT1	0.07	0.006225	

86

014

015

(n)

LISE⁺⁺ modifications for SECAR : WF "bending" direction

SECAR Wien filter in LISE⁺⁺

SECAR Wien filter in COSY

v.9.10.165

v.9.10.168

- Wien filter dispersion is "floating" for each ion in LISE**, and is calculated based on the Dispersion coefficient.
- A new option has been developed for consistency in the case of COSY linked map

LISE⁺⁺ files

Vise Viles \examples \SECAR	.
↑ Name	
^[]	
<mark>≓</mark> e_SECAR	
<pre>Fe_SECAR_p1_beam</pre>	
e_SECAR_p1_COSY	
e_SECAR_p1_reaction	

- \rightarrow SECAR extended for primary beam (not optimized yet)
- \rightarrow SECAR phase1 extended for primary beam
- \rightarrow SECAR phase1 extended with COSY 5th order maps
- \rightarrow SECAR phase1 extended : ${}^{15}O(\alpha, \gamma){}^{19}Ne$

LISE⁺⁺ configurations

- \rightarrow SECAR extended configurations
- \rightarrow COSY file to generate SECAR maps for LISE⁺⁺

File: e_SECAR_p1_COSY.lpp

Opt	tics setting	gs (fast editing)			-								X
Block		Given Name	Start(m)	Length(m)	B0(kG)/*U	Br(Tm)cor/*real	DriftM/*Angle	Rapp(cm)/*R(Leff(m)/*Ldip(m)	2 nd order	CalcMatr/*Z-Q	AngAcc,Apps,Slits	COSY Fit	SE 🔺
D,	= Dipole	tuning	0.000	0.0000	+2.6667	× 0.8000	* +0.0	* 3.0000	* 0.0000	-	* 13	HV	-	S 👘
d 🗖	drift	dl1	0.000	0.8000			standard			\frown		HV		е
<mark>0</mark> 🔷	<quad></quad>	Q1	0.800	0.2500	-3.6534	0.8000	MULT	5.0000	0.2500	yes (5)	1	HV	cosy	е
d 🗖	drift	dl2	1.050	0.1900			standard						1.1	е
<mark>0</mark> 🔷	<quad></quad>	Q2	1.240	0.3000	+2.1788	0.8000	QUAD	6.8000	0.3000	yes (5)	1	HV	cosy	e 😑
d 🗖	drift	dl3	1.540	0.5800			standard						1.1	е
D)	= Dipole	B1	2.120	0.4909	+6.4000	* 0.8000	* +22.5	* 1.2500	× 0.4909	yes (5)	* 13	V	cosy	E
d 🗖	drift	dl4	2.611	1.0000			standard						1.1	е
D,	= Dipole	B2	3.611	0.4909	+6.4000	* 0.8000	* +22.5	* 1.2500	× 0.4909	yes (5)	*13	V	cosy	E
d 🗖	drift	dl5	4.102	0.7700			standard							е
d 🗖	drift	dl6	4.872	0.4000			standard							е
<mark>0</mark> 🔷	<quad></quad>	Hex1	5.272	0.2600	+0.0862	0.8000	SEXT	11.0000	0.2600	yes (5)	1	- HV	cosy	е
d 🗖	drift	dl7	5.532	0.2700			standard							е
<mark>0</mark> 🔷	<quad></quad>	Q3	5.802	0.3500	+2.4264	0.8000	QUAD	11.0000	0.3500	yes (5)	1	- HV	cosy	е
d 🗖	drift	dl8	6.152	0.3500			standard							е
<mark>0</mark> 🔷	<quad></quad>	Q4	6.502	0.3500	-2.4501	0.8000	QUAD	8.0000	0.3500	yes (5)	1	- HV	cosy	е
d 🗖	drift	dl9	6.852	0.2100			standard							е
<mark>0</mark> 🔷	<quad></quad>	Q5	7.062	0.3500	+1.1128	0.8000	QUAD	6.0000	0.3500	yes (5)	1	- HV	cosy	е
d 🗖	drift	dl10	7.412	0.1450			standard						1.1	е
d 🗖	drift	dl11	7.557	0.1850			standard						1.1	е
S ∏	_slits_	slits FP1	7.742	0.0000			SLITS					HV	1.1	е
d 🗆	drift	d12	7.742	0.1700			standard						1.1	е
D	= Dipole	B3	7.912	0.4909	+6.4000	* 0.8000	* +22.5	* 1.2500	* 0.4909	yes (5)	*13	V	cosy	E 👻
Selec	ted block						Angular accept	ance (mrad) —	- Inside Aperture (mm)-		Slits (mm) after thi:	s BLOCK	t order Matrix	Elements
	Dispers	ive (M-dipole)	le	Block nath [m]	Selected	Block Edit		Use	min ma	ax Use	min	max Use 🚺	Matrix	Plot
Bloc	k name —			0	tilla, Master	ole Edit	Horizontal ±		× = -50 50		< = [• Door 0	Dist.
	Auto Itu	uning			www.inititip		Vertical ±		Y = -50 50	- I I I I	Y =		ьeam-Sigi	na Plot
	natic. I		Len	gth after	🚺 Cuts (Ac	ceptances)	Shape		Shape	N	Shape	64	r Viev	v
					Get Optics	al Matrix	Rectangle C	€ Ellipse	Rectangle C 🙃 B	Ellipse	Rectangle 🔎			
Ch	arge State	(∠·Q) = 13											Quit	7 Help
			_									<u> </u>		-
											\backslash /	•		

Blocks are linked with 5th order COSY maps

List of blocks with 5th order COSY maps

Block Name Number Drift "Q1" Dipit "Q2" Dipole "B1" Drift "Hex1" Drift "G3" Drift "G4" Drift "Q4" Drift "Q5" Dipole "B3" Dipole "B4" Drift "Hex2" Drift "G6"	of Lines / Status 242 193 252 252 208 194 194 193 252	Filename G:\SECAR\Q01.TXT G:\SECAR\Q02.TXT G:\SECAR\B01.TXT G:\SECAR\B02.TXT G:\SECAR\Q03.TXT G:\SECAR\Q03.TXT G:\SECAR\Q04.TXT G:\SECAR\Q05.TXT C:\SECAR\Q05.TXT	
Drift "Q1" Drift "Q2" Dipole "B1" Dipole "B2" Drift "Hex1" Drift "Q3" Drift "Q4" Drift "Q5" Dipole "B4" Dipole "B4" Dipole "B4" Drift "Hex2"	242 193 252 252 208 194 194 193 252	G:\SECAR\Q01.TXT G:\SECAR\Q02.TXT G:\SECAR\B02.TXT G:\SECAR\B02.TXT G:\SECAR\B02.TXT G:\SECAR\B03.TXT G:\SECAR\Q04.TXT G:\SECAR\Q04.TXT G:\SECAR\Q05.TXT C:\SECAR\Q05.TXT	
Drift "Q7" Wien "VF1" Drift "Hex3" Drift "Oct1" Drift "Q12" Drift "Q12" Dipole "B7" Dipole "B8" Drift "Q14" Drift "Q15" 	252 211 192 186 247 220 148 193 194 252 252 193 193 193 252	G: SECAR B04. TXT G: SECAR-B04. TXT G: SECAR-006. TXT G: SECAR-007. TXT G: SECAR-007. TXT G: SECAR-013. TXT G: SECAR-012. TXT G: SECAR-012. TXT G: SECAR-012. TXT G: SECAR-012. TXT G: SECAR-018. TXT G: SECAR-015. TXT G: SECAR-015. TXT	

UM;	
MC RADIUS 22.5 0.030 B1N B1S1 B1S2 7;	{B1}
PM_LISE 'B01.TXT' ;	
DL 1.0000 ;	{DL4}
UM;	
MC RADIUS 22.5 0.030 B1N B2S1 B2S2 7;	{B2}
PM_LISE 'B02.TXT' ;	
DL 0.7700 ;	{DL5}
DL 0.4000 ;	{DL6}
UM;	
MH 0.2600 0.008620 0.11;	{HEX1}
PM_LISE 'H01.TXT' ;	

File: e_SECAR_p1_COSY.lpp

"SECAR v6s.fox" can be used to generate these "local "maps

File: e_SECAR_phase1_COSY_o5.lpp

Will be zoomed on the next page

File: e_SECAR_phase1_COSY_o5.lpp

First order matrix elements

SECAR phase 1 with COSY maps : beam sigmas

File: e_SECAR_phase1_COSY_o5.lpp

Beam Sigmas: spatial ⁶⁶Se (3.1 MeV/u); Settings on ⁶⁶Se^{21+..21+}; Config: DSSSSSDSDSSSSSSSSS

SECAR phase 1 with COSY maps : LISE⁺⁺ MC X-envelope

File: e_SECAR_phase1_COSY_o5.lpp

Monte Carlo calculation of fragment transmission		
What isotope transmission to calculate? One fragment of interest. Chose manually here	X-coordinate	Y-coordinate After BLOCK
Group of Isotopes already calculated by the Distribution method (Ncalc = 0)		
C List of isotopes from file to produce inside target	CY mm	CY mm
Input ions rays from file emitted from target	CY'(P) mrad CdP/P %	CY'(P) mrad CdP/P %
Chose fragment of interest	C Radial [f(X,Y) mm C Angle [f(X ',Y')] mrad	C Radial [f(X,Y) mm C Angle [f(X',Y')] mrad
A Element Z 66 Se 34 Beta+ decay A N	C Energy MeV/u C TKE MeV C Momentum MeV/c C Brho T*m	C Energy MeV/u C TKE MeV C Momentum MeV/c C Brho T*m
Charge states 21+ turning Set	C Enho MJ/C C EnergyLoss MeV C Range mm	C Erho MJ/C C Energy Loss MeV C Range mm
Projectile Fragmentation	 Envelope m Energy MeV/mm Deposition /particle 	C Envelope m Energy MeV/mm Deposition /particle
MC transmission options	C Time of flight ns C Length m	C Time of flight ns C Length m
	Stripper - St	art -> Stripper -
Add in the 17 "Distribution" calculation		
plot window	Velocity Velocity Z [cm/ns]	Velocity
X Quit Monte Carlo calculation	Ion parameters (MZ,q)	Ion parameters (M.Z.q)

SECAR phase 1 with COSY maps : LISE⁺⁺ MC Y-envelope

File: e_SECAR_phase1_COSY_o5.lpp

^M€**∛**%

File: e_SECAR_phase1.lpp

Using fields from the SECAR Pre-Conceptual Design Report

Global matrix

First order matrix elements

Global mat	riu					
Giobarmat	110					
1.71399	0.7896	0	0	0	1.27182	[mm]
0.75758	0.93241	0	0	0	0.08012	[mrad]
0	0	15.94788	1.06042	0	0	[mm]
0	0	2.52905	0.23087	0	0	[mrad]
-0.4117	-0.9308	0	0	1	-9.86959	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	

7.39269	3.46894	0	0	0	5.11233	[mm]
3.19314	1.6336	0	0	0	-2.49489	[mrad]
0	0	-1.96752	-0.13856	0	0	[mm]
0	0	11.19827	0.28033	0	0	[mrad]
2.98263	0.65761	0	0	1	-24.18632	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	• /

OT, 08/20/15, East Lansing

File: e_SECAR_phase1.lpp

Using <u>fields</u> from the SECAR Pre-Conceptual Design Report

Global matrix

First order matrix elements

FP2 – no double focus, small dispersion

 - Giodai mat						
1.71399	0.7896	0	0	0	1.27182	[mm]
0.75758	0.93241	0	0	0	0.08012	[mrad]
0	0	15.94788	1.06042	0	0	[mm]
0	0	2.52905	0.23087	0	0	[mrad]
-0.4117	-0.9308	0	0	1	-9.86959	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	

7.39269	3.46894	0	0	0	5.11233	[mm]
3.19314	1.6336	0	0	0	-2.49489	[mrad]
0	0	-1.96752	-0.13856	0	0	[mm]
0	0	11.19827	0.28033	0	0	[mrad]
2.98263	0.65761	0	0	1	-24.18632	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	_~

OT, 08/20/15, East Lansing

SECAR pahse1 optimization in LISE⁺⁺

28 constraints,11 variable fields

Initial +87.6086	and Final	+0.0023725	LISE fit redu	ced values		
Parameters:	LeftBound	Initial	RiahtBound	Final		
#01-a: 01	-5.0e+00 <	-3.653e+00	< +0.0e+00	-3.426e+00	1 I	
#02-q: 02	+0.0e+00 <	+2.179e+00	< +5.0e+00	+1.754e+00		
#03-q: 03	-5.0e+00 <	+2.426e+00	< +5.0e+00	+2.387e+00	, ,	
#04-a: 04	-5.0e+00 <	-2.45Ae+AA	< +0.0e+00	-2.424e+00	j	
#05-a: 05	+0.0e+00 <	+1.113e+00	< +5.0e+00	+1.148e+00	1	
#06-a: 06	+0.0e+00 <	+1.817e+00	< +5.0e+00	+1.835e+00	i	
#07-a: 07	-5.0e+00 <	-3.015e-01	< +5.0e+00	-2.694e-01		
#08-a: 012	-5.0e+00 <	-2 200e+00	< +A.Ae+AA	-2.2020+00	i	
#09-a: 013	+0.00+00 <	+2 0160+00	< +5_0e+00	+1.996e+86	í l	
#10-a: 014	+0.00+00 <	+1 3150+00	< +5_0e+00	+1.310e+00	í l	
#11-a. 015	-5 0e+00 <	-1 1500+00	< +0 0e+00	1 -1 445e+00	í I	
#11 q. q 15	5.00.00	1.4500.00		1 11452.00		
Constaint values:	Initial	Final	Precision	(Fin-Des)/P	Desired	(Init-Des)/F
#01: Q1_sX	+2.892e+01	+2.595e+01	1.0e-01	0	< 50	0
#02: Q2_sX	+5.580e+01	+5.056e+01	1.0e+00	0	< 68	0
#03: B1_sY	+6.303e+00	+7.172e+00	1.0e-01	0	< 30	0
#04: B2_sY	+9.241e+00	+6.603e+00	1.0e-03	0	< 30	0
#05: Hex1 sR	+8.225e+01	+1.019e+02	1.0e-01	+2.962e-06	< 110	0
#06: 03 sX	+6.824e+01	+8.835e+01	1.0e+00	0 1	< 100	o initial "b
#07: 04 sX	+2.884e+01	+4.068e+01	1.0e+00	0 i	< 80	0 value
#08:_05_sx	+2 233e+ 81	+2.764e+01	1.0e+00	0 i	< 60	0
#09 FP1 12	-5.378e-01	+2.724e-09	1.0e-03	+2.724e-06	= 0	+5.378e+02
#10: FP1 sX	+2.260e+01	+1.961e+01	1.0e-01	+3.069e-07	< 30	+6.108e-06
#11: FP1 YY	-7.488e+00	-7.062e+00	1.0e-01	+5.299e-04	> -10	+8.113e-04
#12: B3 5Y	+2.959e+01	+2.585e+01	1.0e+00	A	< 50	A
#13: B4 sY	+2.283e+01	+2.198e+01	1.0e+00	ดิ่	< 50	ñ
#14: UF1 SX	+9.055e+01	+1.061e+02	1.0e-02	+1.975e-03	< 110	Ā
#15: UF1 sY	+4.503e+00	+1_018e+01	1.00+00	A 1	< 35	ñ
#16: Hex3 sY	+1.259e+01	+6.543e+00	1.0e+00	â	< 80	ñ
#17: Hex3 sX	+2.965e+81	+4.6640+01	1.0e+00	ด้	< 80	6
#18 - FP2 XD	+1 272e+00	+3 472e-00	1 Ge-03	+3 472e-06	= 0	+1 2720+03
#10. FP2 TD	+8 022e-02	+4 284e-07	1 Ge-G1	+4 2846-06	= 0	+N N776-N1
#20 FP2 XT	+7 8050-01	+5 6050-10	1 00-03	+5 6050-07	= 0	+7 8050+02
#20. FP2 VVn	+1 5050+01	+1 0660+01	1 00+00	+2 6070-04	2 19	+3 0500+00
#21. 112_11P #22. ED2 UVm	+1 5050+01	+1 0660+01	1 00+00	·2.00/C 04	× 12 > _11	0
#22. FF2 HTW	+1.9410+88	+7 60000-04	1.00-00	42 h00a_0E	- 0	41 0610+01
#20 FF2_TF #24 014 cD	+6 0110+04	·2.4708-00	1.00-01	17 0990-09	- 0	+1 0110+09
#24. U14_SN #95. 046 CD	+0.9110+01	++.9778+01 +h 1790+04	1.00-01	+7.9000-03	1 20	0
#27: UI2 5K	+3.5188+81	T 4.1/38+01	1.02-01	+2.508e-00	N 20 - 0	U 1400-00
#207 FF_AI	+3.4090+00 -1 904c-04	-2.1788-09	1.02-02	+5.1788-07	- 0	+3.4090+02
#27 FF_YF	-1.3800-07	-3.5700-0/	1.00-01	+3.5700-00	= U _ 0	+1.3800+00
#28 [FP_XD	+5.1150+00	+1.2040-08	1.0e-01	+1.2040-0/	= U	+5.115e+01

it-Des)/P	
initial "bad" values .378e+02 .198e-96 .113e-94	ļ
.272e+03)	

RESULTS

MICHIGAN STATE

LIS

R

SITY

E ++

- Global mat	riv		FP1			
					10.07050	[]
-0.42300	l u	l n	l n	JU	13.07058	[IIIIII]
-1.4315	-2.36101	0	0	0	-6.50724	[mrad]
0	0	-7.06243	-1.24098	0	0	[mm]
0	0	-0.00062	-0.1417	0	0	[mrad]
-2.14666	-3.08598	0	0	1	-2.54049	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	

Clabel			FP2			
Global mat	nx					
0.98207	0	0	0	0	0	[mm]
0.81236	1.01825	0	0	0	0	[mrad]
0	0	10.65564	0	0	0	[mm]
0	0	1.84593	0.09385	0	0	[mrad]
-0.81191	-1.42307	0	0	1	-9.82722	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	

- Global mat	rix		DL37	7		
4.03844	0	0	0	0	0.00001	[mm]
1.85669	0.24762	0	0	0	-4.63011	[mrad]
0	0	-1.46124	0	0	0	[mm]
0	0	6.71082	-0.68434	0	0	[mrad]
1.05793	-1.42307	0	0	1	-26.6422	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	

finally all constraints were positively done!!!

SECAR phase1 optimization in **LISE**⁺⁺ : results

Beam Sigmas: spatial 66Se (3.1 MeV/u) + Be (1e-3 mg/cm²); Settings on ⁶⁶Se^{21+..21+}; Config: DSSFSSFSSFDSDFSSSFSSFSSFSSFSSF...

element	Initial	LISE ⁺⁺ result	delta
Q1	-3.6534	-3.4260	0.2274
Q2	2.1788	1.7540	-0.4248
Q3	2.4264	2.3870	-0.0394
Q4	-2.4501	-2.4240	0.0261
Q5	1.1128	1.1480	0.0352
Q6	1.8172	1.8350	0.0178
Q7	-0.3015	-0.2694	0.0321
Q12	-2.2000	-2.2020	-0.0020
Q13	2.0160	1.9960	-0.0200
Q14	1.3147	1.3100	-0.0047
Q15	-1.4500	-1.4450	0.0050

See details for angular acceptance with the next link http://lise.nscl.msu.edu/9_8/SE_blocks.pdf#page=5

OT, 08/20/15, East Lansing

24

10

43.4

Y'

20

mrad

mrad

30

40

Angular Acceptance : Target – FP1

Angular acceptance "Target - FP1"					
	1st order				
Χ'	26.3	mrad			
Υ'	45.8	mrad			

Angular Acceptance: Target - FP2

Angular acceptance "Target - FP2"						
	1st order					
Χ'	26.4	mrad				
Y'	Y' 40.6 mrad					

Angular acceptance "Target - FP2"						
	5th order					
Χ'	25.2	mrad				
Y' 39.8 mrad						

S NSCL

SECAR phase1 Angular Acceptance: Target – DL37

Angular acceptance "Target - DL37"					
	1st order				
Χ'	26.5	mrad			
Υ'	31.4	mrad			

Angular acceptance "Target - DL37"						
5th order						
Χ'	25.2	mrad				
Y'	40.0	mrad				

SECAP phase1 Angular Acceptance: sectors

FP1 - FP2

There is not vertical focus at FP1! It is impossible to use vertical angular acceptance here

66Se : Monte Carlo Transmission Plot ⁶⁶Se (3.1 MeV/u) + Be (1e-4 mg/cm²); Transmitted Fragment ⁶⁶Se^{21+,21+} (beam); Optics Order: 1 dp/p=100.00% ; Brho(Tm): 0.7988, 0.7988, 0.7988

FP2 - DL37

Angular acceptance "FP2 - DL37"						
	1st order					
Χ'	36.8	mrad				
Υ'	Y' 5.24 mrad					

Angular Emittance Loss (5th order optics)

Angular Acceptances in the SECAR phase1 file

		Angula	r accep	tance	s used in t	the SEC	AR phase	L config	gurations	5			
					Target FP1	-	FP1 - FP2	FP2	2 - DL37				
			X'		26.3		47.9	/ 3	36.8	mr	ad		
			Y'		45.8			5	5.24	mr	ad		
	FILE. G. VOLLAR VOLLAR	_pnase1_0	Jar_us w.	LUN_AA.	חֿחֿד								
1 N or	2 Block name k	3 (ind of Block	4 Start (m)	5 Length (m)	6 DriftMode Angle(*)*	7 B0(kG)	8 Br-corrsp Br-dip*	9 Rapp(cm) R(m)*	10 L_eff(m) Len(m)*	11 2nd order	12 Calc Mode	13 AngAc mode	14 Slits shape
1.	tuning [)ipole	0.000	0.000	+0.0 *	+2.663	0.7988*	3.00 *	0.00*	_		ΗV	rectn
3.)rift	0.800	0.250	standard multipole	-3.653	0.8000	5.00	0.25	yes	1		rectn rectn
4. 5.)rift	1.240	0.190	standard multipole	+2.179	0.8000	6.80	0.30	yes	1	=	rectn rectn
б. 7.)ipole	2.120	0.580	standard +22.5 *	+6.390	0.7988*	1.25 *	0.49★	yes		=	rectn
9.)ipole	3.611	0.491	+22.5 *	+6.390	0.7988*	1.25 *	0.49*	yes			rectn
11	. d16 [)rift	4.872	0.400	standard	.0.000	0 0000	11 00	0.00				rectn
13	. d17 I)rift	5.532	0.260	standard	+0.000	0.8000	11.00	0.25	yes	1	=	rectn
15	. d18 I	rift	6.152	0.350	standard	+2.420	0.0000	11.00	0.35	yes	1		rectn
17)rift	6.852	0.210	standard	-2.450	0.0000	6.00	0.35	yes	1		rectn
19)rift	7.412	0.350	standard	+1.113	0.8000	6.00	0.35	yes	Ţ		rectn
20	Slits FR)rift	7.742	0.185	SLITS							 	rectn rectn
23)riit)ipole	7.912	0.170	standard +22.5 *	+6.390	0.7988*	1.25 *	0.49 *	yes		H- 	rectn rectn
24)rift)ipole	8.403	0.510	standard +22.5 *	+6.390	0.7988*	1.25 *	0.49 *	yes			rectn rectn
26	. d114 L . Hex2 D)rift	9.403	0.300	standard multipole	+0.000	0.8000	12.00	0.26	yes	1		rectn rectn
28	. dl15 L . dl16 L)rift	9.963	0.270	standard standard								rectn rectn
30 31	. Q6 I . d117 I)rlft rift	10.503 10.843	0.340 0.200	multipole standard	+1.817	0.8000	14.00	0.34	yes	1		rectn rectn
32 33	. Q7 . d118 D)rift)rift	11.043 11.383	0.340 0.500	multipole standard	-0.301	0.8000	13.00	0.34	yes	1		rectn rectn
34 35	. VF1 W . dl19 D	Jien Drift	11.883 14.248	2.365 0.500	standard								rectn rectn
36 37	. Hex3 I . d120 I)rift)rift	14.748 15.008	0.260 0.280	multipole standard	+0.000	0.7999	11.00	0.26	yes	1		rectn rectn
38 39	. Oct1 I . d121 I)rift)rift	15.288 15.548	0.260 1.750	beam-line standard							=	rectn rectn
$\frac{40}{41}$	dlite P2 I)rift)rift	17.298 17.298	0.000 0.250	SLITS standard							HV	rectn rectn
42 43	. Q12 D . d131 D)rift)rift	17.548 17.848	0.300 0.300	multipole standard	-2.200	0.7999	7.00	0.30	yes	1	=	rectn rectn
44	. Q13 E	rift	18.148	0.300	multipole	+2.016	0.7999	5.00	0.30	yes	1		rectn

Angular Acceptances transmission benchmarks

"Distribution" method With set Angular Acceptances

🖶 statistics: 66Se

66Se Be	sta+ decay (Z=34, N=32)	(
Q1(tuning)	21	
Q2 (B1)	21	
Q3 (B2)	21	
Q4 (B3)	21	
Q5 (B4)	21	
Q6(VF1)	21	
Q7 (B7)	21	
Q8 (B8)	21	
Reaction	BEAM	
Ton Production Pate	(nne) 1 89e±9	
Total ion transmissi	ion (%) 30.239	
IOTAL: THIS REACTION	1 (bba) 1.0ae+a	
Total: All reactions	s (pps) 1.89e+9	
X-Section in target	(mb) beam	
Target	(%) 100	
<u>Q</u> (Charge) ratio	(%) 100	
tuning	(%) 33.45	
X angular transmissi	ion (%) 43.83	
Y angular transmissi	ion (%) 76.32	
slits FP1	(%) 90.6	
X space transmission	n (%) 100	
Y space transmission	n (%) 90.6	
d112	(%) 99.78	
X angular transmiss:	ion (%) 99.78	
d130	(%) 100	
X angular transmiss:	ion (%) 100	
Y angular transmiss:	ion (%) 100	

"Monte Carlo " method With set Angular Acceptances No bounds

- ✓ Use fixed angular acceptances
- Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox

66Se : Monte Carlo Transmission Plot 66Se (3.1 MeV/u) + ; Transmitted Fragment 66Se21+.. dp/p=14.49%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988 AngAccept: ON; Bounds: Off; "dl37" - last block f N of N of Initial Transmission # Ton Passed A11 24821 82070 30.24% 0 66Se 24772 81920 30.24% (+/-0.19% Target 100.0% 33.43% tuning 33.43% Angular acceptance slits FP1 90.46% 90.46% Slits

"Monte Carlo " method No Angular Acceptances WITH bounds

Angular Acceptance & Bounds Use fixed angular acceptances Use physical limits (aperture) inside blocks to calculate fragment transmission For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox 66Se : Monte Carlo Transmission Plot 66Se (3.1 MeV/u) + ; Transmitted Fragment 66Se21+... dp/p=14.49%; Brho(Tm): 0.7988, 0.7988, 0.7988, 0.7988 AngAccept: Off; Bounds: ON; "d137" - last block fo N of N of Passed Initial Ion Transmissio 26874 98253 27.35% A11 26824 98080 27.35% (+/-0.17%) 66Se

Target	100.0%
tuning	100.0%
d11	83.65%
Inside of bounds	83.65%
Q1	59.38%
Inside of bounds	59.38%
Q2	79.60%
Inside of bounds	79.60%
Q4	88.46%
Inside of bounds	88.46%

Angular Acceptances transmission benchmarks

30

Momentum Acceptance

- Emitta	nce —			
?	E (sig	eam CARD ma, semi-ax half-width)	1D - shape is, (Distribution j method)	
1. X	mm	0.1	Gaussian	•
2. T	mrad	0.1	Gaussian	•
3. Y	mm	0.1	Gaussian	•
4. P	mrad	0.1	Gaussian	•
5. L	mm	0	Gaussian	-
6. D	%	5	Rectangle uniform	7)

Momentum Acceptance

5th order

Emitta	nce B (sig	eam CARD ma, semi-ax half-width	1D - shape tis, (Distribution) method)	ſ
1. X	mm	0.1	Gaussian	-
2. T	mrad	0.1	Gaussian	-
3. Y	mm	0.1	Gaussian	-
4. P	mrad	0.1	Gaussian	-
5. L	mm	0	Gaussian	-
6. D	%	5	Rectangle uniform	•

1e-4

1e-5

1e-6

1e-7

1e-8

1e-9

1e-10

Charge States Selection: "Distribution" method

2000 35

-1000

X (mm)

0

No slits, no apertures

1st order

Charge States Selection: Monte Carlo solution

1st order

Lenath [m]

Experiment ¹⁵O(α , γ)¹⁹Ne

Table 3.14. Transmission results for a set of crucial reactions from the target to the final focus in the single VF system.

Reaction	Energy (MeV/u)	Transmission
¹⁵ O(α,γ) ¹⁹ Ne	0.3	95

OT, 08/20/15, East Lansing

Partial cross sections ¹⁵O(0.3 MeV/u) + ⁴He -> ¹⁹Ne* (E_{CM}=0.9 MeV); [no P_{CN}, Penetration^{Q.M}] Cross Sections[mb]: Intr=3.61e+02; Comp=1.07e+02; QE=2.54e+02; L_{crit}=17; L_{max}Graz=0.0; L_{max}LISE=0.0; L_{B fis=0}=19; Vertical lines correspond to L_{crit} & L_{max} Interaction - Compound 1e+4 - Flastic 5 Partial cross section [mb] 1e+3 5 1e+2 1e+1 10 12 14 Δ 6 Angular momentum [hbar]

OT, 08/20/15, East Lansing

Please check the kinematics discussion for the DRAGON separator http://lise.nscl.msu.edu/9_10/DRAGON/DRAGON.pdf#page=51

Experiment ¹⁵O(α , γ)¹⁹Ne: two-body kinematics

In order to obtain distributions corresponding to two-boy kinematics HI+gamma it is possible to change the initial beam emittance as

Emitta	nce —					– Emittance -		
?	B (sigr ł	eam CARE ma, semi-a: nalf-width) 1D - shape xis, (Distribution .) method)		1	? (:	Beam CAR(sigma, semi-a half-width) 1D - shape xis, (Distribution .) method)
1. X	mm	2	Gaussian	•		1.× mm	0.75	Gaussian 💌
2. T	mrad	1	Gaussian	-		2 T mra	4 89	Gaussian 🔹
3. Y	mm	2	Gaussian	-		2	0.75	
4. P	mrad	1	Gaussian	-		3. T mm	0.75	Gaussian 💌
51		0	Countier	_		4. Pmra	d 8.9	Gaussian 💌
0. L		0	Juaussian	<u> </u>		5.L mm	0	Gaussian
6. D	%	1	Gaussian	•				
						6. D %	1.8	Rectangle uniform

-40

-60

LISE++ [G:\SECAR\SECAR phase1 reaction.lpp]

9-08-2015 18:39:31

-20

0

X (mm)

OT, 08/20/15, East Lansing

43

40

In front of the Mass Slits (FP2) with the Charge slits and Angular acceptances

dl21-Xspace: output after slits

Pay attention for The Wien filter parameters!!! The purpose of E(or B) choice is to compensate dispersion after dipoles!

¹⁹Ne³⁺ after the Mass Slits (FP2)

slits FP2

¹⁵O (0.3 MeV/u) + He (100 mm); Settings on ¹⁹Ne^{3+..3+}; Config: DSSFSSFSSFDSDFSSSFSSFSSFSSFSSF...

Experiment ¹⁵O(α , γ)¹⁹Ne : selection

19Ne

¹⁹Ne³⁺ after the DL37

Only ¹⁹Ne³⁺ passing through the separator !

01(tuning)		3
Reaction		FusRes
Ion Production Rate	(pps)	9.9e+4
Total ion transmission	(%)	37.077
Total: this reaction	(pps)	9.9e+4
Total: All reactions	(pps)	9.9e+4
X-Section in target	(mb)	1.3e+2
Target	(%)	39.09
Unreacted in material	(%)	100
Q (Charge) ratio	(%)	39.09
Unstopped in material	(%)	100
tuning	(%)	99.32
X angular transmission	(%)	99.32
Y angular transmission	(%)	100
d112	(%)	95.59

Beta+ decay (Z=10, N=9)

¹⁹Ne³⁺ transmission 94.8% Main cut by the 2-nd horizontal angular acceptance

dl37

 $^{15}O(0.3 \ \text{MeV/u}) + \text{He} (100 \ \text{mm}); \ \text{Settings on} \ ^{19}\text{Ne}^{3+..3+}; \ \text{Config:} \ \text{DSSFSSFSDSDFSSFSSFSSFSSFSSFSSF}... \\ dp/p=7.65\%; \ \text{Brho}(\text{Tm}): \ 0.3783, \ 0.378$

Extended Detail configuration for experts

90 blocks

Segmented "Easy" configuration for regular users

11 blocks (5 sectors, 3 material blocks and 3 slits)

Pay attention for cut settings: 4 angular acceptances, 3 slits

5 sectors (segments)

Open Questions:

- 1. Develop the two-body kinematics mechanism in the case HI & γ
- 2. Primary beam scattering (large angles)
- 3. Wien characteristics utility to compensate dipole dispersion

Acknowledgement:

to Hendrik Schatz and Fernando Motes for documents and files providing, to Mauricio Portillo with COSY actions

OT, 08/20/15, East Lansing

MICHIGAN STATE

LISE ++