Isotope Production in the FRIB Beam Dump: 238U case - How to get isotope yields in the beam dump with the Uranium beam? - Production settings: why a Li-target was used? - Radiation residues calculator: T_{1/2} boundaries against the "stiffness" problem - Link to the "Isotope Production in the FRIB Beam Dump: projectile fragmentation case" presentation ### Isotope yields in the beam dump with the Uranium beam: Files #### Options: 1. You can use the LISE** file http://lise.nscl.msu.edu/work/BeamDump/AF 238U Li.lpp and then Mode #3 (Select detector) in the Radiation residue calculator Or You can use the Radiation list file obtained with AF_238U_Li.lpp http://lise.nscl.msu.edu/work/BeamDump/238U_all.radlist and then Mode #2 (List of isotopes to implant from file) in the and then Mode #2 (List of isotopes to implant from file) in the Radiation residue calculator # Please download the latest LISE⁺⁺ version <u>9.10.371</u> from 10/28/16 to overcome the stiffness problem in the Radiation Residue Calculator. See the "Radiation residues calculator: T1/2 boundaries against the "stiffness" problem" page in this presentation Use the next options for the Radiation Residue calculator: - 1. Total irradiation is 7.1e13 pps, and we are interested in isotopes with residual yield $> 10^5$, so it is possible to increase the global threshold up to 10 for fast calculations avoiding low-yield production - The decay time is expected more than one hour (that it is obtained from chemistry), so please set the T_{1/2} min boundary (important!) equal to 1 sec assuming short-lived products be unbound for fast calculations. #### Calculations with the Radiation residues calculator After settings of the Radiation Residue calculator options, please, enter the "Irradiation" and "Decay" times (10 h & 10 h in this example). Press "Calculate" Pay attention for "stiffness" flag appearance, and change settings. In the shown here example there was not stiffness problem. Elapsed time is 34 seconds Rate x IrradiationTime should be equal to Total Yield @ Final time . If not, so there are some leaks may be due to low error tolerance in the ODE solver, stiffness problem, or violation of "Isotope conservation law" In this example no any leak: 7.063e13 * 3.6e4 = 2.54e18 # Calculation results: Activity #### Activity # Calculation results: 2D final plots #### Radioactive decay residues 2D-plot C Z vs. N C Z vs. N-Z Z vs. N-2Z #### Radioactive decay residues Implanted isotopes file: "G:\BeamDump\238U_all.radlist" (2647 different isotopes) Irradiation Time (IT) = 3.60e+04 sec; Decay Time (DT) = 3.60e+04 sec; Plot All isotopes Model="ODE", N_{Implant}=100, N_{Resid}=100, Abs.Err=1.0e+00, Rel.Err=1.0e-04, Threshold=1.0e+01, T_{1/2}bounds =1.0e+00,1.0e+15 # 2D final plot: ZOOM #### Radioactive decay residues Implanted isotopes file: "G:\BeamDump\238U_all.radlist" (2647 different isotopes) Irradiation Time (IT) = 3.60e+04 sec; Decay Time (DT) = 3.60e+04 sec; Plot All isotopes Model="ODE", N_{Implant}=100, N_{Resid}=100, Abs.Err=1.0e+00, Rel.Err=1.0e-04, Threshold=1.0e+01, T_{1/2}bounds =1.0e+00,1.0e+15 #### Radioactive decay residues Implanted isotopes file: "G:\BeamDump\238U_all.radlist" (2647 different isotopes) Irradiation Time (IT) = 3.60e+04 sec; Decay Time (DT) = 3.60e+04 sec; Plot All isotopes Model="ODE", N_{Implant}=100, N_{Resid}=100, Abs.Err=1.0e+00, Rel.Err=1.0e-04, Threshold=1.0e+01, T_{1/2}bounds = 1.0e+00, 1.0e+15 | 58 | 5.1e+14 | 2.0e+14 | 5.1e+14 | 5.1e+14 | 2.7e+14 | 6.5e+14 | 6.4e+14 | 3.6e+14 | 3.7e+14 | | | | | | 5.1e+14 | 2.0e+14 | .5.1e+14 | 5.1e+14 | 2.7e+14 | 6.5e+14 | 6.4e+14 | 3.6e+14 | 3.7e+14 | | | | | |--------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|---|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------| | | ¹³³ La
5.9e+13 | ¹³⁴ La
5.1e+11 | ¹³⁵ La
2.3e+14 | | ¹³⁷ La
4.2e+14 | ¹³⁸ La | ¹³⁹ La
8.9e+14 | ¹⁴⁰ La | ¹⁴¹ La
5.3e+13 | ¹⁴² La
1.2e+12 | | | | | ¹³³ La
5.9e+13 | ¹³⁴ La
5.1e+11 | ¹³⁵ La
2.3e+14 | | ¹³⁷ La | ¹³⁸ La | ¹³⁹ La
8.9e+14 | ¹⁴⁰ La | ¹⁴¹ La
5.3e+13 | ¹⁴² La
1.2e+12 | | | | | 56 | ¹³⁰ Ba
5.2e+14 | ¹³¹ Ba
5.4e+14 | ¹³² Ba
5.4e+14 | ¹³³ Ba
5.9e+14 | ¹³⁴ Ba
3.2e+14 | ¹³⁵ Ba
2.1e+14 | ¹³⁶ Ba
3.1e+14 | ¹³⁷ Ba
2.4e+14 | ¹³⁸ Ba
9.0e+14 | ¹³⁹ Ba
9.9e+11 | ¹⁴⁰ Ba
6.3e+14 | ¹⁴¹ Ba
2.1e+03 | | | ¹³⁰ Ba
5.2e+14 | ¹³¹ Ba
5.4e+14 | ¹³² Ba
5.4e+14 | ¹³³ Ba
5.9e+14 | ¹³⁴ Ba
3.2e+14 | ¹³⁵ Ba
2.1e+14 | 136 Ba
3.1e+14 | ¹³⁷ Ba
2.4e+14 | ¹³⁸ Ba
9.0e+14 | 139 Ba
9.9e+11 | ¹⁴⁰ Ba
6.3e+14 | ¹⁴¹ Ba
2.1e+03 | | | | ¹²⁷ Cs
9.8e+13 | ¹²⁸ Cs
3.2e+11 | ¹²⁹ Cs
4.9e+14 | ¹³⁰ Cs
8.4e+06 | ¹³¹ Cs
1.8e+14 | ¹³² Cs
1.0e+14 | ¹³³ Cs
2.2e+14 | ¹³⁴ Cs
2.2e+14 | ¹³⁵ Cs
9.8e+14 | ¹³⁶ Cs
4.0e+14 | ¹³⁷ Cs
8.9e+14 | 1 ³⁸ C s
2.0e+08 | | | ¹²⁷ Cs
9.8e+13 | ¹²⁸ Cs
3.2e+11 | ¹²⁹ Cs
4.9e+14 | ¹³⁰ Cs
8.4e+06 | ¹³¹ Cs
1.8e+14 | ¹³² Cs
1.0e+14 | ¹³³ Cs
2.2e+14 | ¹³⁴ Cs
2.2e+14 | ¹³⁵ Cs
9.8e+14 | ¹³⁶ Cs
4.0e+14 | ¹³⁷ Cs
8.9e+14 | 1 ³⁸ C s
2.0e+08 | | | 54 | ¹²⁴ Xe
4.6e+14 | ¹²⁵ Xe
3.0e+14 | ¹²⁶ Xe
6.8e+14 | ¹²⁷ Xe
6.1e+14 | ¹²⁸ Xe
6.4e+14 | ¹²⁹ Xe
3.0e+14 | ¹³⁰ Xe
5.8e+14 | ¹³¹ Xe
2.8e+14 | ¹³² Xe 1.1e+15 | ¹³³ Xe
9.1e+14 | ¹³⁴ Xe
1.5e+15 | ¹³⁵ Xe
3.7e+14 | ¹³⁶ Xe 7.8e+14 | | ¹²⁴ Xe
4.6e+14 | ¹²⁵ Xe
3.0e+14 | ¹²⁶ Xe
6.8e+14 | ¹²⁷ Xe 6.1e+14 | ¹²⁸ Xe
6.4e+14 | ¹²⁹ Xe
3.0e+14 | ¹³⁰ Xe
5.8e+14 | ¹³¹ Xe
2.8e+14 | ¹³² Xe
1.1e+15 | ¹³³ Xe
9.1e+14 | 134 Xe
1.5e+15 | ¹³⁵ Xe
3.7e+14 | ¹³⁶ Xe
7.8e+14 | | | ¹²¹
5.6e+12 | 122
5.2e+11 | ¹²³ | ¹²⁴ | ¹²⁵ | 126 | ¹²⁷ | 128
5.7e+05 | 129
1 7e+15 | 130 | 131
1 7e+15 | ¹³²
3.8e+13 | ¹³³
8.8e+14 | | 121
5.6e+12 | 122
5,2e+11 | 123 | 124 | 125 | 126 | ¹²⁷
4 8e+14 | 128
5.7e+05 | 129 | 130 | 131 1 7e+15 | 132
3.8e+13 | 133
8.8e+14 | | 52 | ¹¹⁸ Te
3.1e+14 | ¹¹⁹ Te
2.1e+14 | ¹²⁰ Te
5.6e+14 | ¹²¹ Te 6.4e+14 | ¹²² Te
7.0e+14 | ¹²³ Te
5.7e+14 | ¹²⁴ Te
2.8e+14 | ¹²⁵ Te | ¹²⁶ Te
3.2e+14 | ¹²⁷ Te | ¹²⁸ Te | ¹²⁹ Te
3.3e+13 | ¹³⁰ Te | | ¹¹⁸ Te
3.1e+14 | ¹¹⁹ Te
2.1e+14 | ¹²⁰ Te
5.6e+14 | ¹²¹ Te 6.4e+14 | ¹²² Te
7.0e+14 | ¹²³ Te
5.7e+14 | ¹²⁴ Te
2.8e+14 | ¹²⁵ Te | ¹²⁶ Te
3.2e+14 | ¹²⁷ Te | ¹²⁸ Te | ¹²⁹ Te
3.3e+13 | ¹³⁰ Te | | | 115 Sb
6.0e+07 | ¹¹⁶ Sb
5.0e+11 | ¹¹⁷ Sb
2.0e+13 | ¹¹⁸ Sb
1.3e+11 | ¹¹⁹ Sb
4.6e+14 | ¹²⁰ Sb
5.0e+01 | ¹²¹ Sb 1.1e+15 | ¹²² Sb | ¹²³ Sb
3.0e+14 | ¹²⁴ Sb
3.0e+14 | ¹²⁵ Sb
6.9e+14 | ¹²⁶ Sb
6.0e+14 | ¹²⁷ Sb 1.2e+15 | | 115 Sb
6.0e+07 | ¹¹⁶ Sb
5.0e+11 | ¹¹⁷ Sb
2.0e+13 | ¹¹⁸ Sb
1.3e+11 | ¹¹⁹ Sb
4.6e+14 | ¹²⁰ Sb
5.0e+01 | ¹²¹ Sb 1.1e+15 | ¹²² Sb 1.8e+14 | ¹²³ Sb
3.0e+14 | ¹²⁴ Sb
3.0e+14 | ¹²⁵ Sb
6.9e+14 | ¹²⁶ Sb
6.0e+14 | ¹²⁷ Sb
1.2e+15 | | s (Z) | ¹¹² Sn
3.9e+14 | ¹¹³ Sn
3.4e+14 | ¹¹⁴ Sn
8.4e+14 | ¹¹⁵ Sn
6.0e+14 | ¹¹⁶ Sn
1.1e+15 | ¹¹⁷ Sn
3.7e+15 | ¹¹⁸ Sn
3.6e+15 | ¹¹⁹ Sn
2.9e+15 | ¹²⁰ Sn
3.2e+15 | ¹²¹ Sn
1.6e+15 | ¹²² Sn
2.3e+15 | ¹²³ Sn
2.0e+15 | ¹²⁴ Sn
1.8e+15 | • | ¹¹² Sn
3.9e+14 | ¹¹³ Sn
3.4e+14 | ¹¹⁴ Sn
8.4e+14 | ¹¹⁵ Sn
6.0e+14 | ¹¹⁶ Sn
1.1e+15 | ¹¹⁷ Sn
3.7e+15 | ¹¹⁸ Sn
3.6e+15 | ¹¹⁹ Sn
2.9e+15 | ¹²⁰ Sn
3.2e+15 | ¹²¹ Sn
1.6e+15 | ¹²² Sn
2.3e+15 | ¹²³ Sn
2.0e+15 | ¹²⁴ Sn
1.8e+15 | | rotons | ¹⁰⁹ In
2.2e+13 | ¹¹⁰ In
5.4e+13 | ¹¹¹ In
3.6e+14 | | ¹¹³ In
3.6e+14 | | ¹¹⁵ In
8.8e+14 | | ¹¹⁷ In
2.3e+13 | ¹¹⁸ In
1.3e+08 | | | | | ¹⁰⁹ In
2.2e+13 | ¹¹⁰ In
5.4e+13 | ¹¹¹ In
3.6e+14 | beta-
beta+ | ¹¹³ In
3.6e+14 | beta-
beta+ | ¹¹⁵ In
8.8e+14 | beta-
beta+ | ¹¹⁷ ln
2.3e+13 | ¹¹⁸ In
1.3e+08 | | | | | Pro | ¹⁰⁶ Cd
1.9e+14 | ¹⁰⁷ Cd
5.5e+13 | ¹⁰⁸ Cd
7.0e+14 | ¹⁰⁹ Cd
4.4e+14 | ¹¹⁰ Cd
9.5e+14 | ¹¹¹ Cd
5.8e+14 | ¹¹² Cd
1.7e+15 | ¹¹³ Cd
2.8e+15 | ¹¹⁴ Cd
3.3e+15 | ¹¹⁵ Cd
2.5e+15 | ¹¹⁶ Cd
2.9e+15 | ¹¹⁷ Cd
5.6e+13 | ¹¹⁸ Cd
8.1e+10 | | ¹⁰⁶ Cd
1.9e+14 | ¹⁰⁷ Cd
5.5e+13 | ¹⁰⁸ Cd
7.0e+14 | ¹⁰⁹ Cd
4.4e+14 | ¹¹⁰ Cd
9.5e+14 | ¹¹¹ Cd
5.8e+14 | ¹¹² Cd
1.7e+15 | ¹¹³ Cd
2.8e+15 | 114 Cd
3.3e+15 | ¹¹⁵ Cd
2.5e+15 | ¹¹⁶ Cd
2.9e+15 | ¹¹⁷ Cd
5.6e+13 | ¹¹⁸ Cd
8.1e+10 | | | ¹⁰³ Ag
3.9e+10 | ¹⁰⁴ Ag
1.6e+11 | ¹⁰⁵ Ag
3.0e+14 | ¹⁰⁶ Ag
3.4e+05 | ¹⁰⁷ Ag
5.2e+14 | | ¹⁰⁹ Ag
1.9e+15 | | ¹¹¹ Ag
3.0e+15 | ¹¹² Ag
3.0e+14 | ¹¹³ Ag
4.6e+14 | | ¹¹⁵ Ag
1.2e+05 | | ¹⁰³ Ag
3.9e+10 | ¹⁰⁴ Ag
1.6e+11 | ¹⁰⁵ Ag
3.0e+14 | ¹⁰⁶ Ag
3.4e+05 | ¹⁰⁷ Ag
5.2e+14 | beta-
beta+ | ¹⁰⁹ Ag
1.9e+15 | beta-
beta+ | ¹¹¹ Ag
3.0e+15 | ¹¹² Ag
3.0e+14 | ¹¹³ Ag
4.6e+14 | | ¹¹⁵ Ag
1.2e+05 | | 46 | ¹⁰⁰ Pd
8.4e+13 | ¹⁰¹ Pd
4.8e+13 | ¹⁰² Pd
2.6e+14 | ¹⁰³ Pd
3.2e+14 | ¹⁰⁴ Pd
8.9e+14 | ¹⁰⁵ Pd
7.7e+14 | ¹⁰⁶ Pd
1.0e+15 | ¹⁰⁷ Pd
3.0e+15 | ¹⁰⁸ Pd
3.1e+15 | ¹⁰⁹ Pd
1.3e+15 | ¹¹⁰ Pd
3.0e+15 | ¹ 11 Pd
3.0e+06 | ¹¹² Pd
1.8e+15 | | ¹⁰⁰ Pd
8.4e+13 | ¹⁰¹ Pd
4.8e+13 | ¹⁰² Pd
2.6e+14 | ¹⁰³ Pd
3.2e+14 | ¹⁰⁴ Pd
8.9e+14 | ¹⁰⁵ Pd
7.7e+14 | ¹⁰⁶ Pd
1.0e+15 | ¹⁰⁷ Pd
3.0e+15 | ¹⁰⁸ Pd
3.1e+15 | ¹⁰⁹ Pd
1.3e+15 | ¹¹⁰ Pd
3.0e+15 | ¹ 11 Pd
3.0e+06 | ¹¹² Pd
1.8e+15 | | | ⁹⁷ Rh
5.4e+06 | ⁹⁸ Rh
3.4e+01 | ⁹⁹ Rh
1.9e+14 | ¹⁰⁰ Rh
1.2e+14 | ¹⁰¹ Rh
3.8e+14 | ¹⁰² Rh
2.9e+14 | ¹⁰³ Rh
4.8e+14 | - | 105 Db
2.0e+15 | 106 D L
2. 1e+09 | 107 Db
7.8e+05 | | | + | 97 Dh
5.4e+06 | 98 ph
3.4e+01 | 99 Ph | 100 Ph | ¹⁰¹ Rh
3.8e+14 | ¹⁰² Rh | ¹⁰³ Rh
4.8e+14 | beta-
beta+ | ¹⁰⁵ Rh
2.0e+15 | ¹⁰⁶ Rh
2.1e+09 | ¹⁰⁷ Rh
7.8e+05 | | | | 44 | ⁹⁴ Ru
1.2e+09 | ⁹⁵ Ru
2.5e+11 | ⁹⁶ Ru
1.4e+14 | ⁹⁷ Ru
1.9e+14 | ⁹⁸ Ru
3.5e+14 | ⁹⁹ Ru
2.7e+14 | ¹⁰⁰ Ru
9.0e+14 | ¹⁰¹ Ru
2.6e+15 | ¹⁰² Ru
2.6e+15 | ¹⁰³ Ru
2.3e+15 | ¹⁰⁴ Ru
2.3e+15 | ¹⁰⁵ Ru
2.4e+14 | ¹⁰⁶ Ru
2.2e+15 | | ⁹⁴ Ru
1.2e+09 | ⁹⁵ Ru
2.5e+11 | ⁹⁶ Ru
1.4e+14 | ⁹⁷ Ru
1.9e+14 | ⁹⁸ Ru
3.5e+14 | ⁹⁹ Ru
2.7e+14 | ¹⁰⁰ Ru
9.0e+14 | ¹⁰¹ Ru
2.6e+15 | ¹⁰² Ru
2.6e+15 | ¹⁰³ Ru
2.3e+15 | ¹⁰⁴ Ru
2.3e+15 | ¹⁰⁵ Ru
2.4e+14 | ¹⁰⁶ Ru
2.2e+15 | | | | | ⁹³ Tc
2.6e+12 | ⁹⁴ Tc
2.1e+13 | ⁹⁵ Tc
1.5e+14 | ⁹⁶ Tc
1.8e+14 | ⁹⁷ Tc
3.4e+14 | ⁹⁸ Tc
3.3e+14 | ⁹⁹ Tc
8.1e+14 | | ¹⁰ 1 Tc
5.6e+02 | | | | | | ⁹³ Tc
2.6e+12 | ⁹⁴ Tc
2.1e+13 | ⁹⁵ Tc
1.5e+14 | ⁹⁶ Tc
1.8e+14 | ⁹⁷ Tc
3.4e+14 | ⁹⁸ Tc
3.3e+14 | ⁹⁹ Tc
8.1e+14 | | ¹⁰ 1 √c
5.6e+02 | | | | 42 | | | ⁹⁰ Mo
8.3e+12 | | ⁹² Mo
1.9e+14 | ⁹³ Mo
2.6e+14 | ⁹⁴ Mo
3.9e+14 | ⁹⁵ Mo
3.9e+14 | ⁹⁶ Mo
6.4e+14 | ⁹⁷ Mo
1.7e+15 | ⁹⁸ Mo
2.7e+15 | ⁹⁹ Mo
1.9e+15 | ¹⁰⁰ Mo
2.2e+15 | | | | ⁹⁰ Mo
8.3e+12 | | ⁹² Mo
1.9e+14 | ⁹³ Mo
2.6e+14 | ⁹⁴ Mo
3.9e+14 | ⁹⁵ Mo
3.9e+14 | ⁹⁶ Mo
6.4e+14 | ⁹⁷ Mo
1.7e+15 | ⁹⁸ Mo
2.7e+15 | ⁹⁹ Mo
1.9e+15 | ¹⁰⁰ Mo
2.2e+15 | | · ' | -38 | | -36 | | -34 | | -32 | | -30 | | -28 | | -26 | | -38 | | -36 | | -34 | | -32 | | -30 | | -28 | | -26 | | | | | | | | | Line (N-2 | Z) | | | | | | | | | | | | | Line (N-2 | Z) | | | | | | ### Uranium beam @ beam dump: Production mechanism # **Production settings** Beam dump materials Ti90 Al6 V4 window: thickness* = 1 mm Water: thickness** = 2.09 mm * Its equivalent is pure Ti material a thickness of 1.011 mm ** In the case of the Uranium beam - LISE** does not calculate isotope Abrasion-Fission production in compounds - And.... There are two compound targets - It is necessary to find an equivalent target # **Equivalent target** There are two conditions for equivalent target : (Production mechanism condition) Number of fission reactions should be the same in the original (Ti90 Al6 V4 window + Water) case and its equivalent (Energy loss condition) The Uranium primary beam passes the equivalent target and stops in a downstream material. | material | Atoms | Abrasion-
Fission
CS | | Thick | NA | "Quasy"
Yield | | | |----------|-------------|----------------------------|-------------|-------|----------------------|----------------------------|-----------|-----------| | | in 1 mg/cm2 | mb | | g/cm2 | atoms | CS*NA | | | | Н | 5.97E+20 | 1101.3 | | 0.023 | 1.39E+22 | 1.53E+25 | | | | 0 | 3.76E+19 | 1652.2 | | 0.185 | 6.97E+21 | 1.15E+25 | | | | H2O | 1.00E+20 | 1284.9 | target2 | 0.209 | 2.09E+22 | 2.69E+25 | | | | | | | | | | | | | | Ti | 1.26E+19 | 1869.7 | target1 | 0.457 | 5.76E+21 | 1.08E+25 | | | | | | | | | | | | | | Li | 8.60E+19 | 1538.2 | | 0.253 | 2.18E+22 | 3.35E+25 | target1+tar | get2 | 2.67E+22 | 3.76E+25 | | | | | | | | | | | | | | | | | _ | | Thickness
from NA | Thickness
from
Yield | | Thickness | | | | | | | g/cm2 | g/cm2 | delta % | average | | | | | | Н | 4.47E-02 | 5.72E-02 | 22% | 5.09E-02 | | | | | | О | 7.09E-01 | 6.06E-01 | 15% | 6.57E-01 | | | | | | H2O | 2.67E-01 | 2.93E-01 | 9% | 2.80E-01 | | | | | | Ti | 2.12E+00 | 1.60E+00 | 25% | 1.86E+00 | | | | | _ | | | | | | | | | | _ | Li | 3.10E-01 | 2.84E-01 | <u>8%</u> | 2.97E-01 | | | | |
 | | | | | 1 | Smallest delta is observed in the case of Li-material. The best equivalent material Final equivalent target thickness ### Radiation residues calculator: # $T_{1/2}$ boundaries against the "stiffness" problem http://lise.nscl.msu.edu/work/BeamDump/RadResCalc v2a.pdf | | | @ Final | Time | | | |-------------------------|---------------------|--------------------|----------------|-------------|-------------------------------| | T1/2
min
boundary | Decay
time,
s | Number of isotopes | Total
yield | Activity | Elapsed
calulation
time | | 1E-08 | 0 | 13 | 1E+09 | 3.0E+11 | 6.07 | | 1E-05 | 0 | 10 | 1E+09 | 5.0E+09 | 1.73 | | 1E-02 | 0 | 9 | 1E+09 | 1.5E+07 | 0.57 | | | | | | @ 1 &10 sec | | | 1E-08 | 100 | 11 | 1E+09 | 1.5E+07 | 9.09 | | 1E-02 | 100 | 11 | 1E+09 | 1.5E+07 | 0.81 | ### Link to ### the "Isotope Production in the FRIB Beam Dump: projectile fragmentation case" presentation http://lise.nscl.msu.edu/work/BeamDump/BeamDump v1.pdf - Energy of beam is taken after the production target Production target thickness is equal to 30% of range of projectile with energy from the FRIB beam list Reactions - Initial beam intensity (400 kW) is corrected for reaction lost in the primary production target - Ti90Al6V4 (1 mm) "beam dump window" is assumed be a target in LISE⁺⁺ file Equivalent material (<u>Ti</u> 1.011 mm) for energy loss and atoms number (important for CS) is used in LISE⁺⁺ - Water (beam dump material) is assumed be a stripper in LISE⁺⁺ file "stripper" thickness is equal to difference of projectile ranges in water with energies after the <u>Ti</u>-target and 35 MeV/u correspondingly.