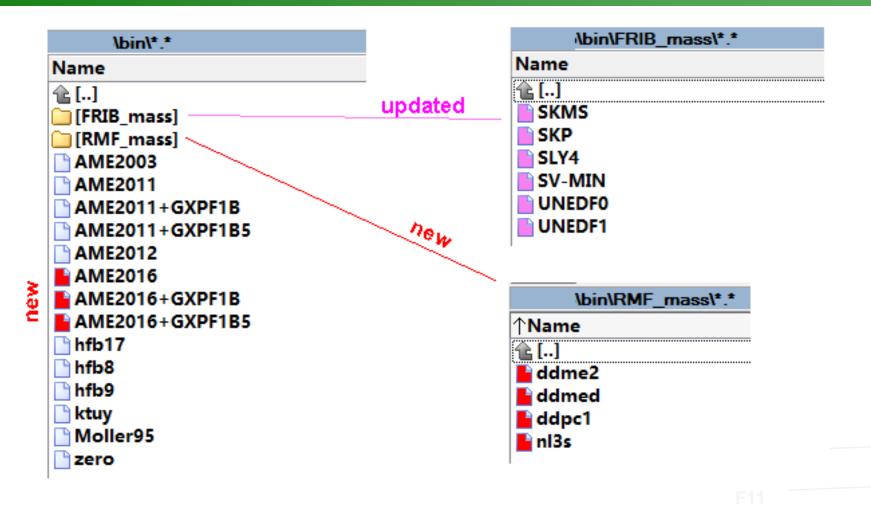
2018: status of mass tables in LISE++


Version 10.1.71

 New mass tables in the LISE⁺⁺ package 	2			
Information about the RMF mass tables	3			
 Construction of the RMF mass tables to use in LISE++ 				
Modification of the mass excess extrapolation				
• LISE++ "Stability" plots	11			
 Working with mass tables in LISE⁺⁺ (loading, plotting) 	12			

2018: New mass tables in LISE++

You can use own mass tables. LISE mass file extension is "Ime".

Line Format: Index <separator> ME (+ optional → <separator> dME),

Where "Index" is $\mathbb{Z}^*1000+N$, <separator> can be space, comma, or tab, "ME" is Mass Excess in MeV, "dME" is Mass Excess Error in MeV.

Information about RMF mass tables, and LISE++ LDM

"Mass tables" calculated with the DDPC1, DD-ME2, DD-ME\$\delta\$, and NL3* covariant energy density functionals.

It represent a part of the study of the global performance of covariant energy density functionals and assessment of related systematic theoretical uncertainties. The major results of this study are presented in the following publication:

S. E. Agbemava, A. V. Afanasjev, D. Ray and P. Ring, "Global performance of covariant energy density functionals: Ground state observables of even-even nuclei and the estimate of theoretical uncertainties", Physical Review C 89, 054320 (2014)

with additional analysis provided in two follow-up publications

A.V.Afanasjev and S.E.Agbemava,

"Covariant energy density functionals: Nuclear matter constraints and global ground state properties" Phys. Rev. C 93, 054310 (2016)

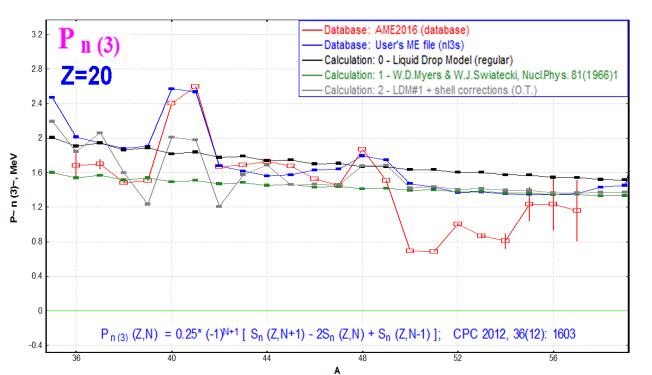
A.V. Afanasjev, S.E. Agbemava, D. Ray and P.Ring, "Neutron drip line: Single-particle degrees of freedom and pairing properties as sources of theoretical uncertainties" Phys. Rev. C 91, 014324 (2015).

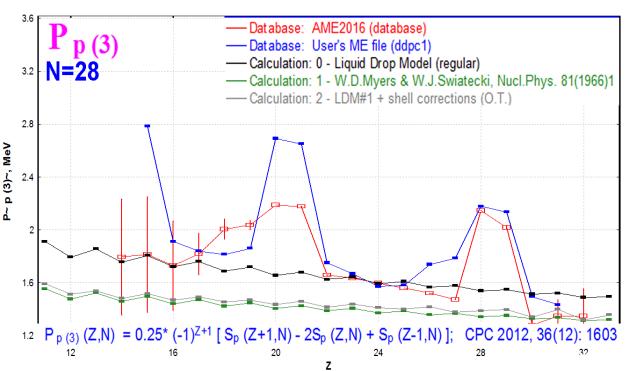
If you have questions, please, contact Anatoli Afanasjev at Anatoli.Afanasjev@gmail.com

RF kicker ———

LDM #0,1,2 on the next plots are Liquid Droplet Models in LISE++

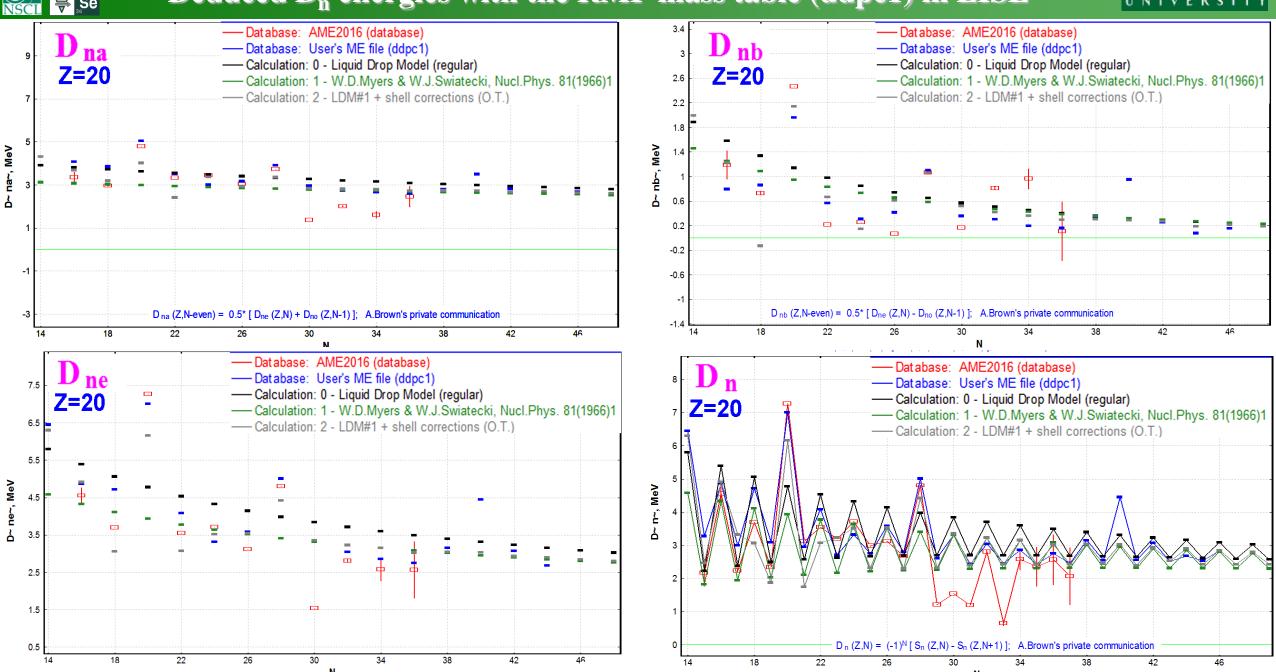
http://lise.nscl.msu.edu/6 1/lise++ 6.htm# Toc26162476

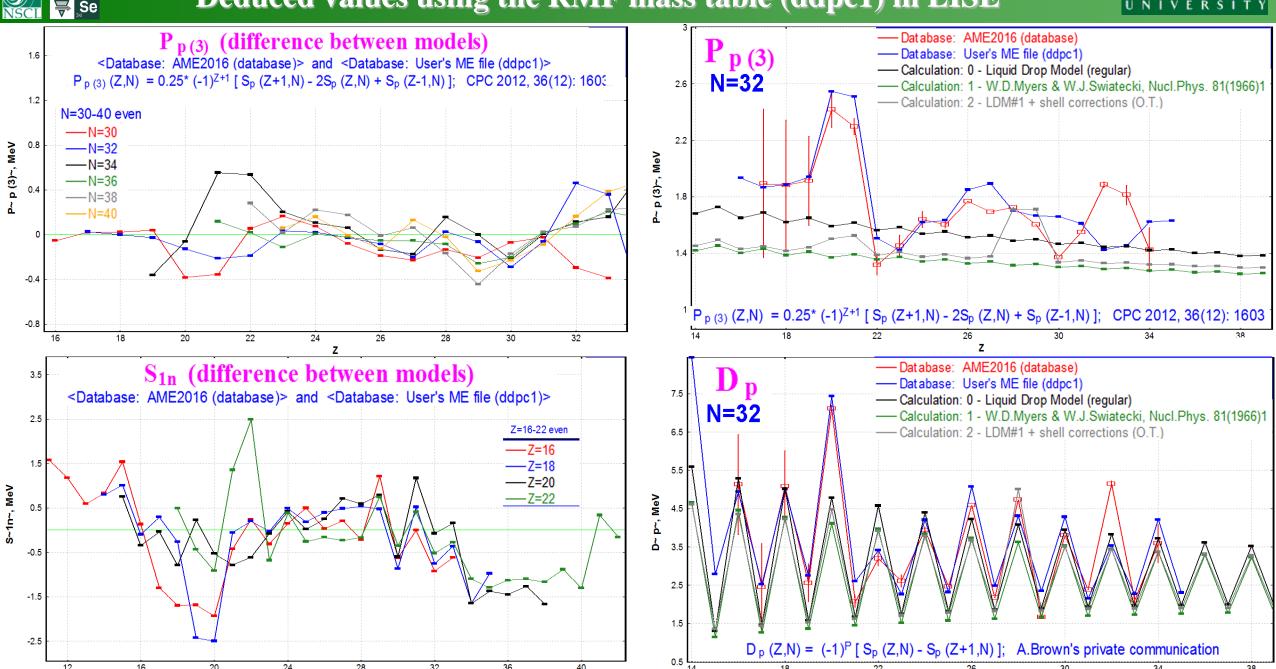

OT@MSU 01/17/2018



Creation of the RMF mass tables in LISE⁺⁺

- Original RMF mass tables contains only information on even-even isotopes, and did not contain Proton and Neutron pairing energy information;
- To create a regular LISE++ mass excess file, in order to use for cross section calculations and provide separation energy information, pairing energy tables should be applied to get information for odd isotopes;
- Average Proton and Neutron pairing energies (PE) from the FRIB mass explorer DTF tables have been used to create RMF mass tables in LISE⁺⁺;
- link on the pairing energies http://lise.nscl.msu.edu/10_1/FRIB_OnlyGaps.xlsx;
- Median StDev(PE)=131 keV (StDev/Mean=16.4%) for neutrons, Median StDev(PE)= 77 keV (StDev/Mean=12.7%) for protons.




Deduced D_n energies with the RMF mass table (ddpc1) in LISE⁺⁺

Deduced values using the RMF mass table (ddpc1) in LISE++

$P_{n(3)}$ difference between RMF mass table (ddpc1) vs. AME2016

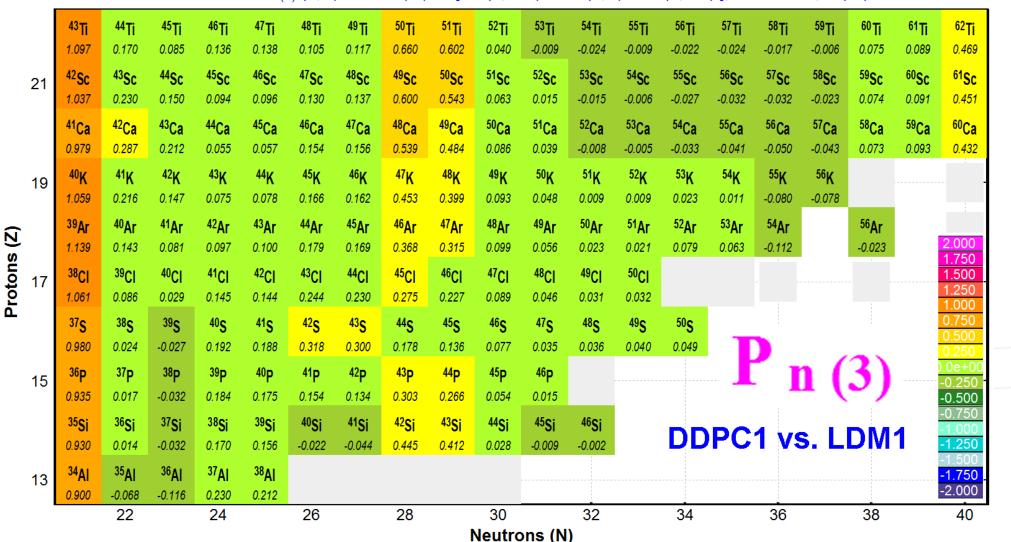
P_{n(3)} (difference between models)

<Database: User's ME file (ddpc1)> and <Database: AME2016 (database)>

 $P_{n(3)}(Z,N) = 0.25^*(-1)^{N+1}[S_n(Z,N+1) - 2S_n(Z,N) + S_n(Z,N-1)]; CPC 2012, 36(12): 1603$

	43 Ti 0.284	44Tj -1.076	45 Ti -1.058	46 Ti -0.426	47Ti -0.184	48 Ti -0.042	49 Ti -0.033	⁵⁰ Ti 0.213	51 Ti 0.502	⁵² Ti 0.464	⁵³ Ti 0.422	⁵⁴ Ti 0.294	⁵⁵ Ti 0.268	⁵⁶ Ti 0.158	57 Ti -0.089	58 Ti -0.034	⁵⁹ Ti 0.024	60 Ti 0.087	61 Ti 0.174	⁶² Ti 0.515
21	⁴² Sc 1.229	43 Sc 0.933	44 Sc 0.607	45 Sc 0.485	⁴⁶ Sc 0.434	47Sc 0.477	⁴⁸ Sc 0.492	⁴⁹ Sc 0.512	⁵⁰ Sc 0.761	⁵¹ Sc 0.909	⁵² Sc 0.727	⁵³ Sc 0.173	⁵⁴ Sc 0.176	⁵⁵ Sc 0.611	⁵⁶ Sc 0.567	57 SC 0.378	⁵⁸ Sc 0.364	⁵⁹ Sc 0.592	⁶⁰ Sc 0.680	
	41Ca -0.108	⁴² Ca 0.092	⁴³ Ca 0.011	44 Ca -0.223	⁴⁵ Ca -0.156	⁴⁶ Ca 0.058	⁴⁷ Ca 0.146	⁴⁸ Ca 0.081	⁴⁹ Ca 0.398	⁵⁰ Ca	51 Ca 0.754	⁵² Ca 0.369	⁵³ Ca 0.510	⁵⁴ Ca 0.520	⁵⁵ Ca 0.087	⁵⁶ Ca 0.065	⁵⁷ Ca 0.145			
19	40 K 0.687	41K 0.484	42 K 0.480	<mark>43</mark> К 0.427	44 K 0.556	45K 0.692	46K 0.728	47 K 0.569	48 K 0.707	49 K 1.006	50 K 0.986	51 K 0.686	52 K 0.723	53 K 0.646	54 K 0.375	55 K 0.502				
(Z	³⁹ Ar 0.546	⁴⁰ Ar -0.122	⁴¹ Ar -0.186	⁴² Ar -0.204	43 Ar -0.128	44 Ar -0.029	⁴⁵ Ar 0.011	⁴⁶ Ar -0.028	⁴⁷ Ar 0.320	⁴⁸ Ar 0.681	⁴⁹ Ar 0.665	⁵⁰ Ar 0.416	⁵¹ Ar 0.417	⁵² Ar 0.485						2.000 1.750
Protons 17	³⁸ Cl 1.066	³⁹ Cl 0.541	40 C 0.490	41 C 0.576	42 CI 0.631	43 C 0.481	44CI 0.511	45 C 0.734	46 CI 1.023	47CI 1.077	⁴⁸ CI 1.048	49 Cl 0.972	50 C 0.982							1.500 1.250 1.000
<u>-</u>	37 S 0.211	38 S -0.304	39 S -0.254	40 S -0.030	41S 0.203	42S 0.161	43S 0.150	44S 0.464	45S 0.816	46 S 0.614	47 S 0.386	48 S 0.307		1	_					0.750 0.500 0.250
15	36 p 0.443	37 p -0.066	38p 0.101	39 p 0.359	40p 0.608	41p 0.546	42 p 0.332	43p 0.664	44p 1.054	45p 0.789	46p 0.748				ľ	n	(3	3)		.0e+00 -0.250 -0.500 -0.750
	³⁵ Si 0.365	³⁶ Si -0.317	37 Si -0.317	³⁸ Si -0.195	³⁹ Si -0.182	40 Si -0.263	41 Si -0.020	42 Si 0.766	43 Si 1.017	44 Si 0.288			DD	PC	1 v	s. A	ME	201	6	-1.000 -1.250 -1.500
13	34 AI 1.100	³⁵ AI -0.035	36 A 0.027	37 A 0.553	³⁸ AI 0.629														_	-1.750 -2.000
22 24 26 28 30 32 34 36 38 Neutrons (N)										40										

count	137
StDeV	0.894
median	0.816
median	0.689



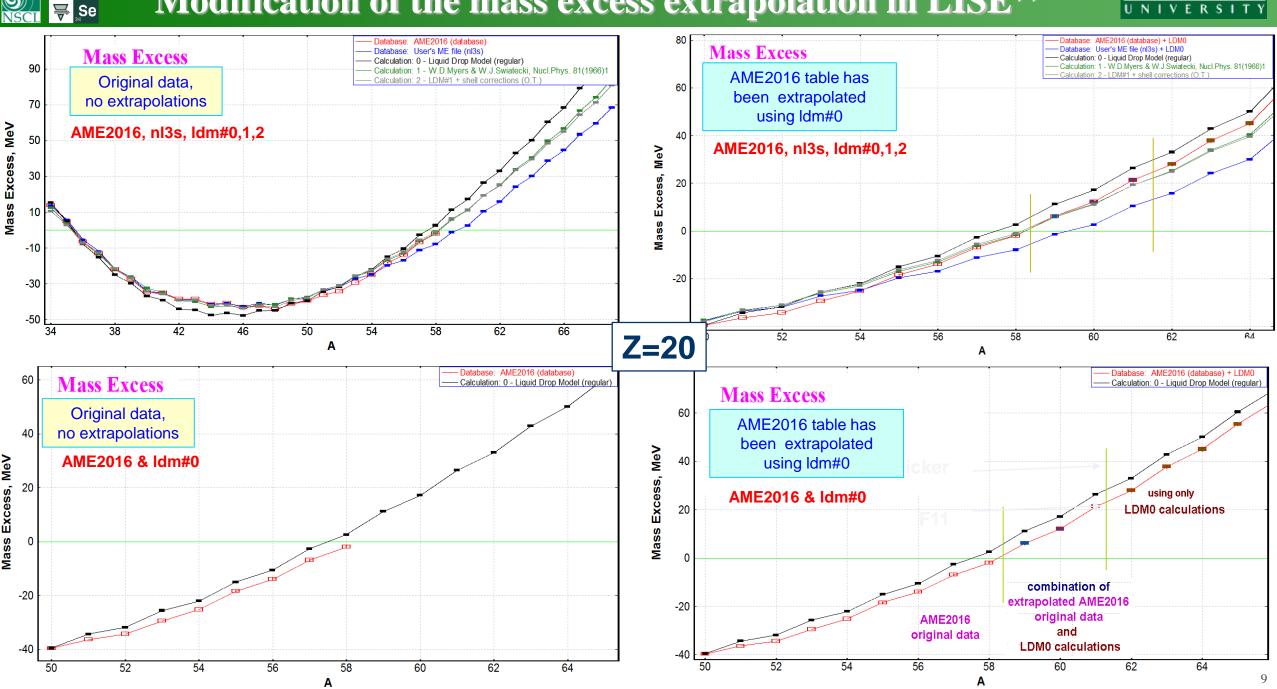
$P_{n(3)}$ difference between RMF mass table (ddpc1) vs. LDM1

$P_{n(3)}$ (difference between models)

<Database: User's ME file (ddpc1)> and <Calculation: 1 - W.D.Myers & W.J.Swiatecki, Nucl.Phys. 81(1966)1> $P_{n(3)}(Z,N) = 0.25^*(-1)^{N+1} [S_n(Z,N+1) - 2S_n(Z,N) + S_n(Z,N-1)];$ CPC 2012, 36(12): 1603

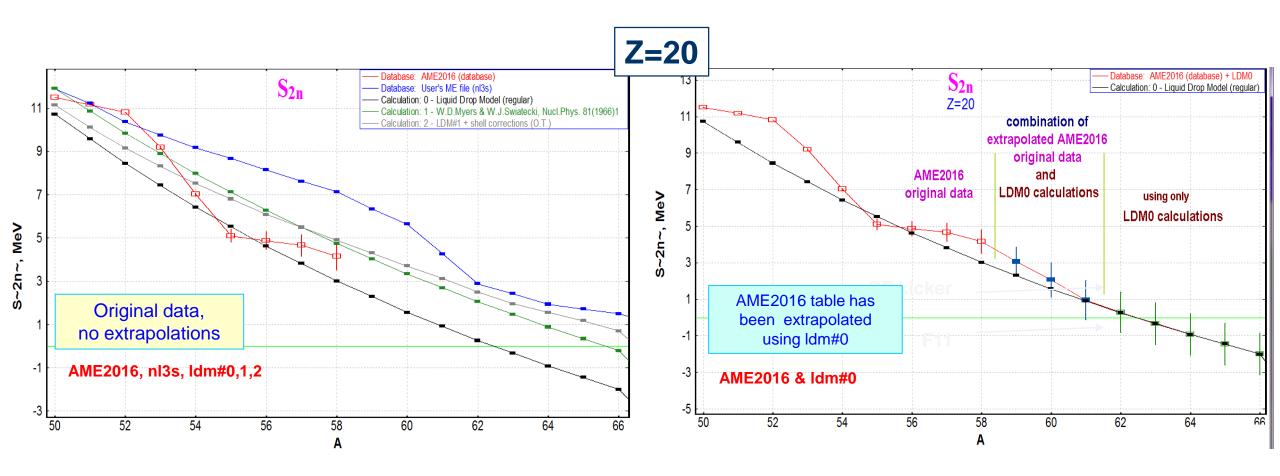
For $13 \le Z \le 22$ $21 \le N \le 40$

count	149	
StDeV	0.271	
median	0.091	
average	0.180	


For $13 \le Z \le 22$ $22 \le N \le 40$

count	139	
StDeV	0.157	
median	0.085	
average	0.121	

Modification of the mass excess extrapolation in LISE⁺⁺



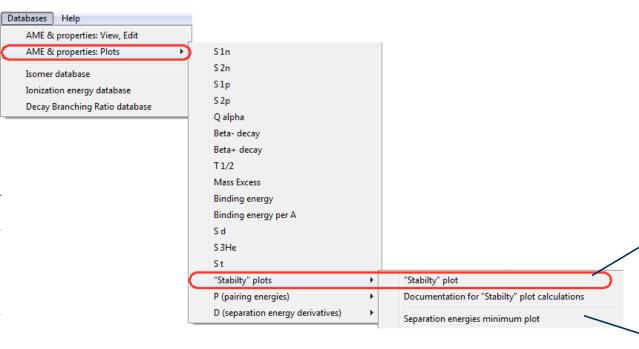
Modification of the mass excess extrapolation in LISE++

S_{2n} plots for Z=20 (corresponds to the previous Mass Excess page)

Where LDM #0,1,2 are Liquid Droplet Models in LISE++

http://lise.nscl.msu.edu/6 1/lise++ 6.htm# Toc26162476

OT@MSU 01/17/2018

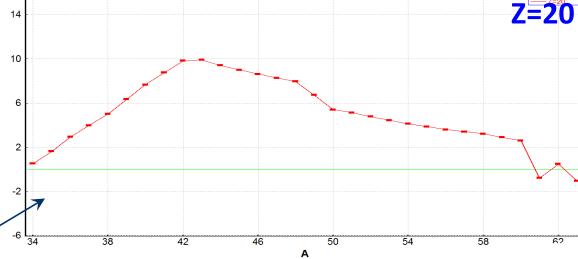

"Stability" plots

"Stability" plot, MeV

More information can be find at

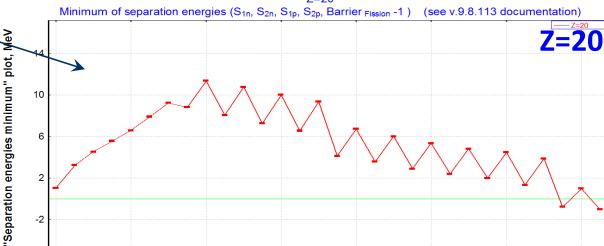
http://lise.nscl.msu.edu/9_8/LISE_stability_plot.pdf

The Purpose is to deduce and plot a minimum value from the set of S1n, S2n, S1p, S2p, Fission Barrier in order to


- Show particle bound isotopes
- Avoid "saw" structure due to odd-even corrections in separation energy

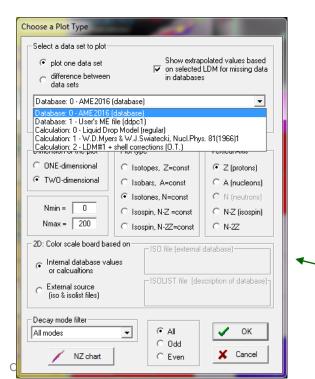
Fission barrier is a maximum value obtained from Fission barrier models in LISE++, including experimental information. BarFac=1, L=0. Fission barrier is decrease by 1.0, roughly assuming that at Fission Barrier =1 a nucleus is not particle bound against fission

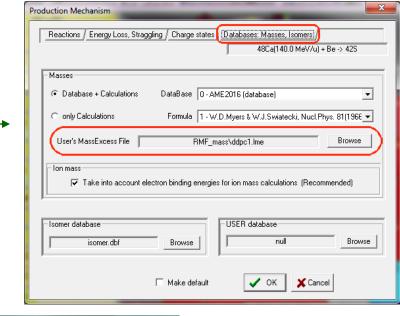
"Stability" plot

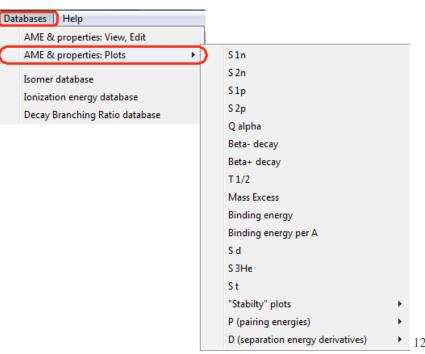

<Database: User's ME file (ddme2)>

"Separation energies minimum" plot

<Database: User's ME file (ddme2)>




Working with mass tables in LISE++



- First of all, download the latest version of the LISE⁺⁺ package from the LISE⁺⁺ site http://lise.nscl.msu.edu/download/, and install the code;
- Select a mass model to use from the dialog using the menu "Physics models" → "Production mechanism" → tab "Databases: Masses, Isomers". "LISE\bin\" is the default directory for mass excess files;
- If you are planning to apply the user mass excess files for cross sections and transmission calculations, then select "1 – User's ME file" in the "DataBase" combox;

- To plot nuclei values deduced from AME2016 database, mass user files, or LDM calculations use the menu "Databases" → "AME & properties: Plots"
- Select a data set to plot, dimension of the plot, plot type, and vertical axis value using the "Choose a Plot type" dialog

